Lokesh1024 commited on
Commit
e7681d0
·
verified ·
1 Parent(s): 6cb5d9a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -315
app.py CHANGED
@@ -1,328 +1,53 @@
1
- import pickle
2
- import tensorflow as tf
3
- import pandas as pd
4
- import numpy as np
 
 
5
 
6
 
7
- # CONTANTS
8
- MAX_LENGTH = 40
9
- # VOCABULARY_SIZE = 10000
10
- BATCH_SIZE = 32
11
- BUFFER_SIZE = 1000
12
- EMBEDDING_DIM = 512
13
- UNITS = 512
14
 
 
15
 
16
- # LOADING DATA
17
- vocab = pickle.load(open('saved_vocabulary/vocab_coco.file', 'rb'))
18
 
19
- tokenizer = tf.keras.layers.TextVectorization(
20
- # max_tokens=VOCABULARY_SIZE,
21
- standardize=None,
22
- output_sequence_length=MAX_LENGTH,
23
- vocabulary=vocab
24
- )
25
 
26
- idx2word = tf.keras.layers.StringLookup(
27
- mask_token="",
28
- vocabulary=tokenizer.get_vocabulary(),
29
- invert=True
30
- )
31
 
32
-
33
- # MODEL
34
- def CNN_Encoder():
35
- inception_v3 = tf.keras.applications.InceptionV3(
36
- include_top=False,
37
- weights='imagenet'
38
- )
39
-
40
- output = inception_v3.output
41
- output = tf.keras.layers.Reshape(
42
- (-1, output.shape[-1]))(output)
43
-
44
- cnn_model = tf.keras.models.Model(inception_v3.input, output)
45
- return cnn_model
46
-
47
-
48
- class TransformerEncoderLayer(tf.keras.layers.Layer):
49
-
50
- def __init__(self, embed_dim, num_heads):
51
- super().__init__()
52
- self.layer_norm_1 = tf.keras.layers.LayerNormalization()
53
- self.layer_norm_2 = tf.keras.layers.LayerNormalization()
54
- self.attention = tf.keras.layers.MultiHeadAttention(
55
- num_heads=num_heads, key_dim=embed_dim)
56
- self.dense = tf.keras.layers.Dense(embed_dim, activation="relu")
57
-
58
-
59
- def call(self, x, training):
60
- x = self.layer_norm_1(x)
61
- x = self.dense(x)
62
-
63
- attn_output = self.attention(
64
- query=x,
65
- value=x,
66
- key=x,
67
- attention_mask=None,
68
- training=training
69
- )
70
-
71
- x = self.layer_norm_2(x + attn_output)
72
- return x
73
-
74
-
75
- class Embeddings(tf.keras.layers.Layer):
76
-
77
- def __init__(self, vocab_size, embed_dim, max_len):
78
- super().__init__()
79
- self.token_embeddings = tf.keras.layers.Embedding(
80
- vocab_size, embed_dim)
81
- self.position_embeddings = tf.keras.layers.Embedding(
82
- max_len, embed_dim, input_shape=(None, max_len))
83
-
84
-
85
- def call(self, input_ids):
86
- length = tf.shape(input_ids)[-1]
87
- position_ids = tf.range(start=0, limit=length, delta=1)
88
- position_ids = tf.expand_dims(position_ids, axis=0)
89
-
90
- token_embeddings = self.token_embeddings(input_ids)
91
- position_embeddings = self.position_embeddings(position_ids)
92
-
93
- return token_embeddings + position_embeddings
94
-
95
-
96
- class TransformerDecoderLayer(tf.keras.layers.Layer):
97
-
98
- def __init__(self, embed_dim, units, num_heads):
99
- super().__init__()
100
- self.embedding = Embeddings(
101
- tokenizer.vocabulary_size(), embed_dim, MAX_LENGTH)
102
-
103
- self.attention_1 = tf.keras.layers.MultiHeadAttention(
104
- num_heads=num_heads, key_dim=embed_dim, dropout=0.1
105
- )
106
- self.attention_2 = tf.keras.layers.MultiHeadAttention(
107
- num_heads=num_heads, key_dim=embed_dim, dropout=0.1
108
- )
109
-
110
- self.layernorm_1 = tf.keras.layers.LayerNormalization()
111
- self.layernorm_2 = tf.keras.layers.LayerNormalization()
112
- self.layernorm_3 = tf.keras.layers.LayerNormalization()
113
-
114
- self.ffn_layer_1 = tf.keras.layers.Dense(units, activation="relu")
115
- self.ffn_layer_2 = tf.keras.layers.Dense(embed_dim)
116
-
117
- self.out = tf.keras.layers.Dense(tokenizer.vocabulary_size(), activation="softmax")
118
-
119
- self.dropout_1 = tf.keras.layers.Dropout(0.3)
120
- self.dropout_2 = tf.keras.layers.Dropout(0.5)
121
-
122
-
123
- def call(self, input_ids, encoder_output, training, mask=None):
124
- embeddings = self.embedding(input_ids)
125
-
126
- combined_mask = None
127
- padding_mask = None
128
-
129
- if mask is not None:
130
- causal_mask = self.get_causal_attention_mask(embeddings)
131
- padding_mask = tf.cast(mask[:, :, tf.newaxis], dtype=tf.int32)
132
- combined_mask = tf.cast(mask[:, tf.newaxis, :], dtype=tf.int32)
133
- combined_mask = tf.minimum(combined_mask, causal_mask)
134
-
135
- attn_output_1 = self.attention_1(
136
- query=embeddings,
137
- value=embeddings,
138
- key=embeddings,
139
- attention_mask=combined_mask,
140
- training=training
141
- )
142
-
143
- out_1 = self.layernorm_1(embeddings + attn_output_1)
144
-
145
- attn_output_2 = self.attention_2(
146
- query=out_1,
147
- value=encoder_output,
148
- key=encoder_output,
149
- attention_mask=padding_mask,
150
- training=training
151
- )
152
-
153
- out_2 = self.layernorm_2(out_1 + attn_output_2)
154
-
155
- ffn_out = self.ffn_layer_1(out_2)
156
- ffn_out = self.dropout_1(ffn_out, training=training)
157
- ffn_out = self.ffn_layer_2(ffn_out)
158
-
159
- ffn_out = self.layernorm_3(ffn_out + out_2)
160
- ffn_out = self.dropout_2(ffn_out, training=training)
161
- preds = self.out(ffn_out)
162
- return preds
163
-
164
-
165
- def get_causal_attention_mask(self, inputs):
166
- input_shape = tf.shape(inputs)
167
- batch_size, sequence_length = input_shape[0], input_shape[1]
168
- i = tf.range(sequence_length)[:, tf.newaxis]
169
- j = tf.range(sequence_length)
170
- mask = tf.cast(i >= j, dtype="int32")
171
- mask = tf.reshape(mask, (1, input_shape[1], input_shape[1]))
172
- mult = tf.concat(
173
- [tf.expand_dims(batch_size, -1), tf.constant([1, 1], dtype=tf.int32)],
174
- axis=0
175
- )
176
- return tf.tile(mask, mult)
177
-
178
-
179
- class ImageCaptioningModel(tf.keras.Model):
180
-
181
- def __init__(self, cnn_model, encoder, decoder, image_aug=None):
182
- super().__init__()
183
- self.cnn_model = cnn_model
184
- self.encoder = encoder
185
- self.decoder = decoder
186
- self.image_aug = image_aug
187
- self.loss_tracker = tf.keras.metrics.Mean(name="loss")
188
- self.acc_tracker = tf.keras.metrics.Mean(name="accuracy")
189
-
190
-
191
- def calculate_loss(self, y_true, y_pred, mask):
192
- loss = self.loss(y_true, y_pred)
193
- mask = tf.cast(mask, dtype=loss.dtype)
194
- loss *= mask
195
- return tf.reduce_sum(loss) / tf.reduce_sum(mask)
196
-
197
-
198
- def calculate_accuracy(self, y_true, y_pred, mask):
199
- accuracy = tf.equal(y_true, tf.argmax(y_pred, axis=2))
200
- accuracy = tf.math.logical_and(mask, accuracy)
201
- accuracy = tf.cast(accuracy, dtype=tf.float32)
202
- mask = tf.cast(mask, dtype=tf.float32)
203
- return tf.reduce_sum(accuracy) / tf.reduce_sum(mask)
204
-
205
-
206
- def compute_loss_and_acc(self, img_embed, captions, training=True):
207
- encoder_output = self.encoder(img_embed, training=True)
208
- y_input = captions[:, :-1]
209
- y_true = captions[:, 1:]
210
- mask = (y_true != 0)
211
- y_pred = self.decoder(
212
- y_input, encoder_output, training=True, mask=mask
213
- )
214
- loss = self.calculate_loss(y_true, y_pred, mask)
215
- acc = self.calculate_accuracy(y_true, y_pred, mask)
216
- return loss, acc
217
-
218
-
219
- def train_step(self, batch):
220
- imgs, captions = batch
221
-
222
- if self.image_aug:
223
- imgs = self.image_aug(imgs)
224
-
225
- img_embed = self.cnn_model(imgs)
226
-
227
- with tf.GradientTape() as tape:
228
- loss, acc = self.compute_loss_and_acc(
229
- img_embed, captions
230
- )
231
 
232
- train_vars = (
233
- self.encoder.trainable_variables + self.decoder.trainable_variables
234
- )
235
- grads = tape.gradient(loss, train_vars)
236
- self.optimizer.apply_gradients(zip(grads, train_vars))
237
- self.loss_tracker.update_state(loss)
238
- self.acc_tracker.update_state(acc)
239
-
240
- return {"loss": self.loss_tracker.result(), "acc": self.acc_tracker.result()}
241
-
242
-
243
- def test_step(self, batch):
244
- imgs, captions = batch
245
-
246
- img_embed = self.cnn_model(imgs)
247
-
248
- loss, acc = self.compute_loss_and_acc(
249
- img_embed, captions, training=False
250
- )
251
-
252
- self.loss_tracker.update_state(loss)
253
- self.acc_tracker.update_state(acc)
254
-
255
- return {"loss": self.loss_tracker.result(), "acc": self.acc_tracker.result()}
256
-
257
- @property
258
- def metrics(self):
259
- return [self.loss_tracker, self.acc_tracker]
260
-
261
-
262
- def load_image_from_path(img_path):
263
- img = tf.io.read_file(img_path)
264
- img = tf.io.decode_jpeg(img, channels=3)
265
- img = tf.keras.layers.Resizing(299, 299)(img)
266
- img = tf.keras.applications.inception_v3.preprocess_input(img)
267
- return img
268
-
269
-
270
- def generate_caption(img, caption_model, add_noise=False):
271
- if isinstance(img, str):
272
- img = load_image_from_path(img)
273
-
274
- if add_noise == True:
275
- noise = tf.random.normal(img.shape)*0.1
276
- img = (img + noise)
277
- img = (img - tf.reduce_min(img))/(tf.reduce_max(img) - tf.reduce_min(img))
278
-
279
- img = tf.expand_dims(img, axis=0)
280
- img_embed = caption_model.cnn_model(img)
281
- img_encoded = caption_model.encoder(img_embed, training=False)
282
-
283
- y_inp = '[start]'
284
- for i in range(MAX_LENGTH-1):
285
- tokenized = tokenizer([y_inp])[:, :-1]
286
- mask = tf.cast(tokenized != 0, tf.int32)
287
- pred = caption_model.decoder(
288
- tokenized, img_encoded, training=False, mask=mask)
289
-
290
- pred_idx = np.argmax(pred[0, i, :])
291
- pred_word = idx2word(pred_idx).numpy().decode('utf-8')
292
- if pred_word == '[end]':
293
- break
294
-
295
- y_inp += ' ' + pred_word
296
-
297
- y_inp = y_inp.replace('[start] ', '')
298
- return y_inp
299
-
300
-
301
- def get_caption_model():
302
- encoder = TransformerEncoderLayer(EMBEDDING_DIM, 1)
303
- decoder = TransformerDecoderLayer(EMBEDDING_DIM, UNITS, 8)
304
-
305
- cnn_model = CNN_Encoder()
306
-
307
- caption_model = ImageCaptioningModel(
308
- cnn_model=cnn_model, encoder=encoder, decoder=decoder, image_aug=None,
309
- )
310
-
311
- def call_fn(batch, training):
312
- return batch
313
 
314
- caption_model.call = call_fn
315
- sample_x, sample_y = tf.random.normal((1, 299, 299, 3)), tf.zeros((1, 40))
316
 
317
- caption_model((sample_x, sample_y))
 
 
 
 
 
 
318
 
319
- sample_img_embed = caption_model.cnn_model(sample_x)
320
- sample_enc_out = caption_model.encoder(sample_img_embed, training=False)
321
- caption_model.decoder(sample_y, sample_enc_out, training=False)
322
 
323
- try:
324
- caption_model.load_weights('saved_models/image_captioning_coco_weights.h5')
325
- except FileNotFoundError:
326
- caption_model.load_weights('Image-Captioning/saved_models/image_captioning_coco_weights.h5')
327
 
328
- return caption_model
 
 
 
 
 
 
 
 
1
+ import io
2
+ import os
3
+ import streamlit as st
4
+ import requests
5
+ from PIL import Image
6
+ from model import get_caption_model, generate_caption
7
 
8
 
9
+ @st.cache(allow_output_mutation=True)
10
+ def get_model():
11
+ return get_caption_model()
 
 
 
 
12
 
13
+ caption_model = get_model()
14
 
 
 
15
 
16
+ def predict():
17
+ captions = []
18
+ pred_caption = generate_caption('tmp.jpg', caption_model)
 
 
 
19
 
20
+ st.markdown('#### Predicted Captions:')
21
+ captions.append(pred_caption)
 
 
 
22
 
23
+ for _ in range(4):
24
+ pred_caption = generate_caption('tmp.jpg', caption_model, add_noise=True)
25
+ if pred_caption not in captions:
26
+ captions.append(pred_caption)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
+ for c in captions:
29
+ st.write(c)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
+ st.title('Image Captioner')
32
+ img_url = st.text_input(label='Enter Image URL')
33
 
34
+ if (img_url != "") and (img_url != None):
35
+ img = Image.open(requests.get(img_url, stream=True).raw)
36
+ img = img.convert('RGB')
37
+ st.image(img)
38
+ img.save('tmp.jpg')
39
+ predict()
40
+ os.remove('tmp.jpg')
41
 
 
 
 
42
 
43
+ st.markdown('<center style="opacity: 70%">OR</center>', unsafe_allow_html=True)
44
+ img_upload = st.file_uploader(label='Upload Image', type=['jpg', 'png', 'jpeg'])
 
 
45
 
46
+ if img_upload != None:
47
+ img = img_upload.read()
48
+ img = Image.open(io.BytesIO(img))
49
+ img = img.convert('RGB')
50
+ img.save('tmp.jpg')
51
+ st.image(img)
52
+ predict()
53
+ os.remove('tmp.jpg')