Lokesh1024 commited on
Commit
12f2677
·
verified ·
1 Parent(s): f42435a

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -0
app.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from PIL import Image
3
+ import tensorflow as tf
4
+ import numpy as np
5
+ import pickle
6
+
7
+ # Load the pre-trained model
8
+ @st.cache(allow_output_mutation=True)
9
+ def load_model():
10
+ model = tf.keras.models.load_model('model.h5')
11
+ return model
12
+
13
+ # Load the tokenizer
14
+ @st.cache(allow_output_mutation=True)
15
+ def load_tokenizer():
16
+ with open('tokenizer.pkl', 'rb') as handle:
17
+ tokenizer = pickle.load(handle)
18
+ return tokenizer
19
+
20
+ model = load_model()
21
+ tokenizer = load_tokenizer()
22
+
23
+ # Function to preprocess the image
24
+ def preprocess_image(image):
25
+ image = image.resize((299, 299)) # Resize to the input size of the model
26
+ image = np.array(image) / 255.0 # Normalize
27
+ image = np.expand_dims(image, axis=0) # Add batch dimension
28
+ return image
29
+
30
+ # Function to generate caption
31
+ def generate_caption(image):
32
+ image = preprocess_image(image)
33
+ predictions = model.predict(image)
34
+ predicted_caption = tokenizer.sequences_to_texts(predictions.argmax(axis=-1))
35
+ return predicted_caption[0]
36
+
37
+ # Streamlit app
38
+ st.title("Image Captioning App")
39
+ st.write("Upload an image to generate a caption")
40
+
41
+ uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
42
+
43
+ if uploaded_file is not None:
44
+ image = Image.open(uploaded_file)
45
+ st.image(image, caption='Uploaded Image.', use_column_width=True)
46
+ st.write("")
47
+ st.write("Generating caption...")
48
+ caption = generate_caption(image)
49
+ st.write(caption)