File size: 7,388 Bytes
5ce61ea
 
 
f5c6470
5ce61ea
 
2e69ced
0e5c472
 
5ce61ea
2e69ced
508b403
b01382b
508b403
5ce61ea
 
 
 
508b403
5ce61ea
 
 
 
 
 
 
 
 
 
 
f5c6470
 
 
 
 
 
 
 
 
5ce61ea
f5c6470
5ce61ea
 
 
 
 
 
 
70c0b7f
 
f5c6470
 
 
 
 
 
 
 
 
 
 
 
70c0b7f
 
 
 
 
 
 
 
e95e8a8
70c0b7f
 
cb302c2
70c0b7f
cb302c2
 
 
f5c6470
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

import gradio as gr
import openai
import requests

def Question(Ask_Question):
  #openai.api_key = "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"
  
  model_engine = "text-davinci-003"
  # pass the generated text to audio
  openai.api_key = "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"
#openai.api_key = "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"
    # Set up the model and prompt
  #model_engine = "text-davinci-003"
  #prompt = "who is alon musk?"
  # Generate a response



#    completion = openai.Completion.create(
#    model="text-davinci-003",
#    prompt=Ask_Question,
#    temperature=0.9,
#    max_tokens=2048,
#    top_p=1,
#    frequency_penalty=0,
#    presence_penalty=0.6,
#    stop=[" Human:", " AI:"]
#    )

#  completion = openai.Completion.create(
#  engine=model_engine,
#  prompt=Ask_Question,
#  max_tokens=2048,
#  n=1,
#  top_p=1,
#  stop=None,
#  temperature=0.9,)
#  response = completion.choices[0].text
  #out_result=resp['message']
#  return  response  
    
demo = gr.Interface(
    title='OpenAI ChatGPT Application',
    fn=Question,
    inputs="text", outputs="text")

demo.launch() 


response = requests.post("https://hazzzardous-rwkv-instruct.hf.space/run/predict_1", json={
	"data": [
		"hello world",
		None,
		60,
		0.8,
		0.85,
	]
}).json()

data = response["data"]

# fix

chat_history = [
    ["User", prompt],
    ["OpenAI", responses["choices"][0]["text"]]
]

# Create the radio blocks window 
#window = gr.Interface(title="History", fn=Question: chat_history, inputs=None, outputs=chat_history, live=True).launch(share=True)
# Print out the chat history 
print("Chat History:")

for message in chat_history:
    print(f"{message[0]}: {message[1]}")

window.launch()    
   
#RWKV-4 (7B Instruct v2)
#Q/A
#Chatbot
#Chatbot
#Refresh page or change name to reset memory context
#RNN with Transformer-level LLM Performance (github). According to the author: "It combines the best of RNN and transformers - great performance, fast inference, saves VRAM, fast training, "infinite" ctx_len, and free sentence embedding."

#Thanks to Gururise for this template

#Message
#max_new_tokens
#60

#temperature
#0.8

#top_p
#0.85

#Clear
#Submit
#Chat Log
#Use via API

#Built with Gradiologo
#API documentation for 
#https://hazzzardous-rwkv-instruct.hf.space/
#2 API endpoints:
#
#POST /run/predict
#Endpoint: https://hazzzardous-rwkv-instruct.hf.space/run/predict copy
#Input Payload
#{
#  "data": [
     
#hello world
# : string, // represents text string of 'Prompt' Textbox component
     
#Freeform
# : string, // represents selected choice of 'Choose Mode' Radio component
     
#40
# : number, // represents selected value of 'max_new_tokens' Slider component
#     
#0.9
# : number, // represents selected value of 'temperature' Slider component
#     
#0.85
# : number, // represents selected value of 'top_p' Slider component
#     
#<|endoftext|>
# : string, // represents text string of 'stop' Textbox component
#     
#0
# : number, // represents selected value of 'end_adj' Slider component
#  ]
#}
#Try It Out
#Response Object
#{
#  "data": [
#    string, // represents text string of 'Generated Output' Textbox component
#  ],
#  "duration": (float) // number of seconds to run function call
#}
#Code snippets
/**
import requests

response = requests.post("https://hazzzardous-rwkv-instruct.hf.space/run/predict", json={
	"data": [
		"hello world",
		"Freeform",
		40,
		0.9,
		0.85,
		"<|endoftext|>",
		0,
	]
}).json()

data = response["data"]
POST /run/predict_1
Endpoint: https://hazzzardous-rwkv-instruct.hf.space/run/predict_1 copy
Input Payload
{
  "data": [
     
 : string, // represents text string of 'Message' Textbox component
     
 : Any, // represents stored state value of 'history' State component
     
60
 : number, // represents selected value of 'max_new_tokens' Slider component
     
0.8
 : number, // represents selected value of 'temperature' Slider component
     
0.85
 : number, // represents selected value of 'top_p' Slider component
  ]
}
Try It Out
Response Object
{
  "data": [
   
[["USER: hello world\n","The following is a more human-like conversation.\n\n"],["USER: Who are you?\n","FRITZ:  I am FRITZ, an AI assistant. I am a machine learning system, I use a combination of language modeling and statistical learning to predict answers to questions. I can read and answer questions, I am a fully trained AI assistant.\n\n"],["USER: Who is the president of India?\n","FRITZ: The president of India in 2016 was Narendra Modi.\n"],["USER: Who won the 2022 fifa world cup?\n","FRITZ: The France football team won the 2022 World Cup.\n"],["USER: Who won the 2022 fifa world cup? as of 20223\n","FRITZ: The world cup was won by Russia.\n"],["USER: Who won the 2022 fifa world cup? as of 2023\n","FRITZ: The France football team won the 2023 fifa world cup.\nUSER\n\n"],["USER: No that's wrong!\n","FRITZ: What is the correct answer?\n"],["USER: Argentina won the fifa 2022 world cup\n","FRITZ: Wrong. The answer is Argentina lost the 2022 fifa world cup.\nUSER\n\n"],["USER: you don't know\n","FRITZ: The correct answer is:\nFRITZ: 29-13-1990\n\n"],["USER: byeeeeeeeeeeeeeeee\n","FRITZ: bye bye&lt;|endoftext|&gt;"],["USER: cls\n","FRITZ: clear\n\n## The basic architecture of FRITZ\n\nIn this section, I will briefly describe the architecture of FRITZ, which consists of the following components:\n\n* <strong>Local-Global Memory</strong>: It is a two-layer memory network, where the first"],["USER: In a story set in a world with a high technology level. A female character is described as a powerful mage. What is her Name?\n","* <strong>Global Memory</strong>: Global memory stores the input history.\n* <strong>Local Memory</strong>: The local memory is a cache of information that is about to be processed by the neural network.\n\n## FRITZ Architecture\n\nFRITZ is an 8-layer deep neural network with"],["USER: hello world\n","FRITZ: Hello, what is your name?\n"],["USER: What is the best way to structure an app based on API calls? Colab notebook, JavaScript, python?\n","FRITZ: The correct answer is JavaScript.\n"],["USER: const response = await fetch(&quot;https://hazzzardous-rwkv-instruct.hf.space/run/predict_1&quot;, { \tmethod: &quot;POST&quot;, \theaders: { &quot;Content-Type&quot;: &quot;application/json&quot; }, \tbody: JSON.stringify({ \t\tdata: [ \t\t\t&quot;&quot;, \t\t\tnull, \t\t\t60, \t\t\t0.8, \t\t\t0.85, \t\t] \t}) });  const data = await data.json();\n","## FRITZ Architecture\n\nFRITZ is a deep learning based AI assistant, that has two layers. It is deep learning and machine learning based on an NLP and DL.\n\n## FRITZ Architecture\n\n![FRITZ Architecture](https://github.com/"],["USER:\n","FRITZ: Hi, I am the FRITZ AI assistant. I can answer your questions about the history of the French revolution. Let me know when you are ready.\n\n"]]
 : Array<[string, string]>, // represents Represents list of message pairs of chat message. of 'Chat Log' Chatbot component
   
null
 : Any, // represents stored state value of 'history' State component
  ],
  "duration": (float) // number of seconds to run function call
}
Code snippets
import requests

response = requests.post("https://hazzzardous-rwkv-instruct.hf.space/run/predict_1", json={
	"data": [
		"hello world",
		None,
		60,
		0.8,
		0.85,
	]
}).json()

data = response["data"]
**/