Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import zipfile
|
3 |
+
import tensorflow as tf
|
4 |
+
import numpy as np
|
5 |
+
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
6 |
+
import os
|
7 |
+
|
8 |
+
from tqdm import tqdm
|
9 |
+
|
10 |
+
def unzip_and_load(zip_file_path, data_dir):
|
11 |
+
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
|
12 |
+
zip_ref.extractall(data_dir)
|
13 |
+
|
14 |
+
|
15 |
+
unzip_and_load('realfake.zip', 'unzipped_data')
|
16 |
+
|
17 |
+
train_datagen = ImageDataGenerator(
|
18 |
+
rescale=1./255,
|
19 |
+
|
20 |
+
)
|
21 |
+
|
22 |
+
batch_size = 50 # Change Batch Size (Default 32)
|
23 |
+
|
24 |
+
train_generator = train_datagen.flow_from_directory(
|
25 |
+
'unzipped_data',
|
26 |
+
target_size=(150, 150),
|
27 |
+
batch_size=batch_size,
|
28 |
+
class_mode='binary'
|
29 |
+
)
|
30 |
+
|
31 |
+
class ELM(object):
|
32 |
+
def __init__(self, input_size, output_size, hidden_size):
|
33 |
+
self.input_size = input_size
|
34 |
+
self.output_size = output_size
|
35 |
+
self.hidden_size = hidden_size
|
36 |
+
|
37 |
+
self.weight = np.random.normal(size=[self.hidden_size, self.input_size])
|
38 |
+
self.bias = np.random.normal(size=[self.hidden_size])
|
39 |
+
self.beta = np.random.normal(size=[self.hidden_size, self.output_size])
|
40 |
+
|
41 |
+
def sigmoid(self, x):
|
42 |
+
return 1.0 / (1.0 + np.exp(-x))
|
43 |
+
|
44 |
+
def relu(self, x):
|
45 |
+
return tf.nn.relu(x)
|
46 |
+
|
47 |
+
def predict(self, X):
|
48 |
+
X = tf.convert_to_tensor(X, dtype=tf.float32)
|
49 |
+
X = tf.reshape(X, [X.shape[0], -1]) # Flatten the input data
|
50 |
+
y = self.relu((X @ self.weight.T) + self.bias) @ self.beta
|
51 |
+
return y
|
52 |
+
|
53 |
+
def train(self, X, y):
|
54 |
+
X = tf.convert_to_tensor(X, dtype=tf.float32)
|
55 |
+
y = tf.convert_to_tensor(y, dtype=tf.float32)
|
56 |
+
X = tf.reshape(X, [X.shape[0], -1])
|
57 |
+
H = self.relu((X @ self.weight.T) + self.bias)
|
58 |
+
H_inv = tf.linalg.pinv(H)
|
59 |
+
# Add a new dimension to y to make it a column vector
|
60 |
+
y = tf.expand_dims(y, axis=-1) # Now y has shape (32, 1)
|
61 |
+
self.beta = H_inv @ y
|
62 |
+
|
63 |
+
|
64 |
+
loss = tf.reduce_mean(tf.square(self.predict(X) - y)) # Replace with your loss function
|
65 |
+
|
66 |
+
return loss
|
67 |
+
|
68 |
+
def calculate_loss(self, X, y): # define the missing function
|
69 |
+
X = tf.convert_to_tensor(X, dtype=tf.float32)
|
70 |
+
y = tf.convert_to_tensor(y, dtype=tf.float32)
|
71 |
+
y_pred = self.predict(X)
|
72 |
+
loss = tf.reduce_mean(tf.square(y_pred - y))
|
73 |
+
return loss
|
74 |
+
|
75 |
+
|
76 |
+
img_width = 150
|
77 |
+
img_height = 150
|
78 |
+
hidden_size = 100
|
79 |
+
|
80 |
+
elm = ELM(img_width * img_height * 3, 1, hidden_size)
|
81 |
+
|
82 |
+
num_epochs = 10 # Change the amount of Epochs (Default 10)
|
83 |
+
|
84 |
+
steps_per_epoch = len(train_generator)
|
85 |
+
|
86 |
+
|
87 |
+
for epoch in range(num_epochs):
|
88 |
+
|
89 |
+
train_generator.reset()
|
90 |
+
with tqdm(total=steps_per_epoch, desc=f"Training progress Epoch {epoch+1}/{num_epochs}", unit="batch", colour="green") as pbar:
|
91 |
+
for batch_x, batch_y in train_generator:
|
92 |
+
elm.train(batch_x, batch_y)
|
93 |
+
pbar.update(1)
|
94 |
+
pbar.set_postfix(loss=elm.calculate_loss(batch_x, batch_y))
|
95 |
+
|
96 |
+
|
97 |
+
if pbar.n == pbar.total:
|
98 |
+
break
|
99 |
+
|
100 |
+
val_datagen = ImageDataGenerator(rescale=1./255)
|
101 |
+
val_generator = val_datagen.flow_from_directory(
|
102 |
+
'unzipped_data',
|
103 |
+
target_size=(150, 150),
|
104 |
+
batch_size=batch_size,
|
105 |
+
class_mode='binary'
|
106 |
+
)
|
107 |
+
|
108 |
+
|
109 |
+
train_acc = []
|
110 |
+
val_acc = []
|
111 |
+
losses = []
|
112 |
+
|
113 |
+
import gradio as gr
|
114 |
+
from tensorflow.keras.preprocessing.image import img_to_array
|
115 |
+
from PIL import Image
|
116 |
+
import numpy as np
|
117 |
+
|
118 |
+
|
119 |
+
def predict_image(image):
|
120 |
+
"""Preprocesses and predicts on a single image."""
|
121 |
+
img_width = 150
|
122 |
+
img_height = 150
|
123 |
+
img = Image.fromarray(np.uint8(image)).convert(
|
124 |
+
"RGB"
|
125 |
+
) # Convert to PIL Image and ensure RGB format
|
126 |
+
img = img.resize((img_width, img_height)) # Resize using PIL
|
127 |
+
|
128 |
+
if img is None:
|
129 |
+
return "Invalid image: Resizing failed"
|
130 |
+
|
131 |
+
x = img_to_array(img)
|
132 |
+
x = np.expand_dims(x, axis=0) # Add batch dimension
|
133 |
+
x = x / 255.0 # Normalize
|
134 |
+
prediction = elm.predict(x)
|
135 |
+
|
136 |
+
# Ensure prediction is a NumPy array and handle potential shape issues
|
137 |
+
prediction = np.array(prediction)
|
138 |
+
if prediction.size > 0:
|
139 |
+
# Calculate percentages based on prediction value
|
140 |
+
real_percentage = (1 - prediction.item()) * 100
|
141 |
+
fake_percentage = prediction.item() * 100
|
142 |
+
return f"Real: {real_percentage:.2f}% Generated: {fake_percentage:.2f}%"
|
143 |
+
else:
|
144 |
+
return "Prediction not available"
|
145 |
+
|
146 |
+
|
147 |
+
interface = gr.Interface(
|
148 |
+
fn=predict_image,
|
149 |
+
inputs="image",
|
150 |
+
outputs="text",
|
151 |
+
allow_flagging="manual", # Allow users to flag uncertain predictions
|
152 |
+
flagging_options=[
|
153 |
+
"incorrect",
|
154 |
+
"other",
|
155 |
+
], # specify the options the user can select when flagging
|
156 |
+
css="""
|
157 |
+
.gradio-component-image {
|
158 |
+
width: 300px;
|
159 |
+
}
|
160 |
+
""", # Add your CSS here within the gr.Interface constructor
|
161 |
+
)
|
162 |
+
|
163 |
+
interface.launch(share=True, debug=True)
|
164 |
+
|