Spaces:
Running
Running
import chromadb | |
from chromadb.utils import embedding_functions | |
from sentence_transformers import SentenceTransformer | |
from pypdf import PdfReader as reader | |
import os | |
# experiment with larger models | |
MODEL_NAME = "Salesforce/SFR-Embedding-Mistral" # ~ 1.2 gb | |
DISTANCE_FUNCTION = "cosine" | |
COLLECTION_NAME = "scheme" | |
EMBEDDING_FUNC = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=MODEL_NAME) | |
client = chromadb.PersistentClient(path="./chromadb_linux_two/") | |
print("Getting Collection") | |
schemer = client.create_collection( | |
name=COLLECTION_NAME, | |
embedding_function=EMBEDDING_FUNC, | |
) | |
print(f"Number enteries in collection: {schemer.count()}") | |
########################################################################### | |
def get_text(pdf_path: str) -> str: | |
doc = reader(pdf_path) | |
text_content = '' | |
for page in range(len(doc.pages)): | |
page = doc.pages[page] | |
text_content += page.extract_text() | |
return text_content | |
def clean_text(text: str)-> str: | |
return text.replace('\n', ' ') | |
files = os.listdir('./data/') | |
dataset = [] | |
for file in files: | |
if file.endswith(".pdf"): | |
text_content = str(get_text(os.path.join('data', file))) | |
dataset.append(text_content) | |
print(file) | |
batch_size = 1024 | |
padding_element = '.' | |
batch_documents = [] | |
batch_ids = [] | |
batch_metadata = [] | |
for i, document in enumerate(dataset): | |
# entering each batch | |
for j in range(0, len(document), batch_size): | |
try: | |
j_end = min(j + batch_size, len(document)) | |
batch = document[j:min(j+batch_size, len(document))] | |
if len(batch) < batch_size: # Extend the batch with the padding elements | |
padding_needed = batch_size - len(batch) | |
batch = batch + str(padding_element * padding_needed) | |
print(f"Doc {i+1}/{len(dataset)}: Batch {j}/{len(document)}") | |
text = clean_text(batch) | |
batch_documents.append(text) | |
batch_ids.append(f'batch{i}{j}{batch[0]}') | |
batch_metadata.append({"length": len(batch)}) | |
except Exception as e: | |
print(f"Error processing batch {j} of document {i}: {e}") | |
print("Upserting into collection") | |
schemer.upsert( | |
ids=[str(id) for id in batch_ids], | |
metadatas=batch_metadata, | |
documents=batch_documents, | |
) |