Spaces:
Sleeping
Sleeping
use inference api
Browse files
app.py
CHANGED
@@ -2,48 +2,26 @@
|
|
2 |
import streamlit as st
|
3 |
import torch
|
4 |
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", torch_dtype=dtype).to(device)
|
9 |
-
return prior, decoder
|
10 |
-
|
11 |
-
def generate_images(prompt, negative_prompt, num_images_per_prompt, device, dtype):
|
12 |
-
with torch.cuda.amp.autocast(dtype=dtype):
|
13 |
-
prior_output = prior(
|
14 |
-
prompt=prompt,
|
15 |
-
height=1024,
|
16 |
-
width=1024,
|
17 |
-
negative_prompt=negative_prompt,
|
18 |
-
guidance_scale=4.0,
|
19 |
-
num_images_per_prompt=num_images_per_prompt,
|
20 |
-
)
|
21 |
-
decoder_output = decoder(
|
22 |
-
image_embeddings=prior_output.image_embeddings,
|
23 |
-
prompt=prompt,
|
24 |
-
negative_prompt=negative_prompt,
|
25 |
-
guidance_scale=0.0,
|
26 |
-
output_type="pil",
|
27 |
-
)
|
28 |
-
return decoder_output.images
|
29 |
-
|
30 |
|
31 |
st.title("Image Generator with Diffusers")
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
dtype = torch.bfloat16
|
37 |
-
return load_pipelines(device, dtype), device, dtype
|
38 |
-
|
39 |
-
(prior, decoder), device, dtype = init_model()
|
40 |
-
|
41 |
-
prompt = st.text_input("Enter a prompt:", "Anthropomorphic cat dressed as a pilot")
|
42 |
-
negative_prompt = st.text_input("Enter a negative prompt:", "")
|
43 |
-
num_images_per_prompt = st.slider("Number of images per prompt:", 1, 5, 2)
|
44 |
|
|
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
2 |
import streamlit as st
|
3 |
import torch
|
4 |
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
|
5 |
+
import requests
|
6 |
+
import io
|
7 |
+
from PIL import Image
|
8 |
+
import os
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
load_dotenv()
|
11 |
|
12 |
+
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-cascade-prior"
|
13 |
+
headers = {"Authorization": f"Bearer ${os.getenv('bearer_token')}"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
st.title("Image Generator with Diffusers")
|
16 |
|
17 |
+
def query(payload):
|
18 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
19 |
+
return response.content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
prompt = st.text_input("Enter a prompt:", "batman hitting the griddy in gotham")
|
22 |
|
23 |
+
image_bytes = query({
|
24 |
+
"inputs": prompt,
|
25 |
+
})
|
26 |
+
# You can access the image with PIL.Image for example
|
27 |
+
image = Image.open(io.BytesIO(image_bytes))
|