Spaces:
Sleeping
Sleeping
XiaoyiYangRIT
commited on
Commit
·
7aa5317
1
Parent(s):
e041131
Update some files
Browse files- app.py +12 -99
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,105 +1,21 @@
|
|
1 |
-
|
2 |
import gradio as gr
|
3 |
-
import
|
4 |
-
import
|
5 |
-
import time
|
6 |
-
from PIL import Image
|
7 |
-
from decord import VideoReader, cpu
|
8 |
-
from torchvision.transforms import Compose, Resize, ToTensor, Normalize
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
AutoTokenizer,
|
13 |
-
AutoProcessor,
|
14 |
-
AutoConfig
|
15 |
-
)
|
16 |
-
from huggingface_hub import snapshot_download
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
# === 常量设定 ===
|
21 |
-
MODEL_NAME = "OpenGVLab/InternVL3-14B"
|
22 |
-
CACHE_DIR = "/data/internvl3_model"
|
23 |
-
|
24 |
-
# === 视觉预处理 ===
|
25 |
-
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
26 |
-
IMAGENET_STD = (0.229, 0.224, 0.225)
|
27 |
-
|
28 |
-
transform = Compose([
|
29 |
-
Resize((448, 448)),
|
30 |
-
ToTensor(),
|
31 |
-
Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)
|
32 |
-
])
|
33 |
-
|
34 |
-
# === 模型下载与缓存 ===
|
35 |
-
if not os.path.exists(CACHE_DIR):
|
36 |
-
print("⏬ First run: downloading model to persistent storage...")
|
37 |
-
snapshot_download(repo_id=MODEL_NAME, local_dir=CACHE_DIR)
|
38 |
-
else:
|
39 |
-
print("✅ Loaded model from persistent cache.")
|
40 |
-
|
41 |
-
# === GPU层级分配(多GPU支持) ===
|
42 |
-
def split_model(model_path):
|
43 |
-
device_map = {}
|
44 |
-
world_size = torch.cuda.device_count()
|
45 |
-
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
|
46 |
-
num_layers = config.llm_config.num_hidden_layers
|
47 |
-
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
|
48 |
-
num_layers_per_gpu = [num_layers_per_gpu] * world_size
|
49 |
-
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
|
50 |
-
layer_cnt = 0
|
51 |
-
for i, num_layer in enumerate(num_layers_per_gpu):
|
52 |
-
for _ in range(num_layer):
|
53 |
-
device_map[f'language_model.model.layers.{layer_cnt}'] = i
|
54 |
-
layer_cnt += 1
|
55 |
-
device_map['vision_model'] = 0
|
56 |
-
device_map['mlp1'] = 0
|
57 |
-
device_map['language_model.model.tok_embeddings'] = 0
|
58 |
-
device_map['language_model.model.embed_tokens'] = 0
|
59 |
-
device_map['language_model.output'] = 0
|
60 |
-
device_map['language_model.model.norm'] = 0
|
61 |
-
device_map['language_model.model.rotary_emb'] = 0
|
62 |
-
device_map['language_model.lm_head'] = 0
|
63 |
-
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
|
64 |
-
return device_map
|
65 |
-
|
66 |
-
# === 加载组件(已缓存) ===
|
67 |
-
print("🚀 Loading tokenizer/processor/model from cache...")
|
68 |
-
tokenizer = AutoTokenizer.from_pretrained(CACHE_DIR, trust_remote_code=True)
|
69 |
-
processor = AutoProcessor.from_pretrained(CACHE_DIR, trust_remote_code=True)
|
70 |
-
device_map = split_model(CACHE_DIR)
|
71 |
-
model = AutoModel.from_pretrained(
|
72 |
-
CACHE_DIR,
|
73 |
-
torch_dtype=torch.bfloat16,
|
74 |
-
low_cpu_mem_usage=True,
|
75 |
-
use_flash_attn=True,
|
76 |
-
trust_remote_code=True,
|
77 |
-
device_map=device_map
|
78 |
-
).eval()
|
79 |
-
|
80 |
-
# === 视频帧提取函数 ===
|
81 |
-
def extract_frames(video_path, num_frames=8):
|
82 |
-
vr = VideoReader(video_path, ctx=cpu(0))
|
83 |
-
total_frames = len(vr)
|
84 |
-
frame_indices = list(torch.linspace(0, total_frames - 1, num_frames).int().tolist())
|
85 |
-
images = []
|
86 |
-
for idx in frame_indices:
|
87 |
-
img = Image.fromarray(vr[idx].asnumpy()).convert("RGB")
|
88 |
-
img_tensor = transform(img)
|
89 |
-
images.append(img_tensor)
|
90 |
-
return torch.stack(images)
|
91 |
-
|
92 |
-
# === 主推理函数 ===
|
93 |
def evaluate_ar(video):
|
94 |
-
|
95 |
-
|
96 |
-
num_patches = [1] * frames.shape[0]
|
97 |
output, _ = model.chat(
|
98 |
tokenizer,
|
99 |
-
|
100 |
prompt,
|
101 |
-
generation_config=
|
102 |
-
num_patches_list=
|
103 |
history=None,
|
104 |
return_history=True
|
105 |
)
|
@@ -112,7 +28,4 @@ gr.Interface(
|
|
112 |
outputs="text",
|
113 |
title="InternVL3 AR Evaluation (Single-turn)",
|
114 |
description="Upload a short AR video clip. The model will sample frames and assess occlusion/rendering quality."
|
115 |
-
).launch()
|
116 |
-
|
117 |
-
# (在模型加载完成后)
|
118 |
-
print(f"✅ Model fully loaded. Time elapsed: {time.time() - start_time:.2f} sec.")
|
|
|
1 |
+
# app.py(主入口简化版)
|
2 |
import gradio as gr
|
3 |
+
from src.model_loader import load_model
|
4 |
+
from src.video_utils import process_video_for_internvl3
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
# === 初始化模型 ===
|
7 |
+
tokenizer, model = load_model()
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
# === 推理接口 ===
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
def evaluate_ar(video):
|
11 |
+
pixel_values, num_patches_list, prompt = process_video_for_internvl3(video)
|
12 |
+
generation_config = dict(max_new_tokens=512)
|
|
|
13 |
output, _ = model.chat(
|
14 |
tokenizer,
|
15 |
+
pixel_values,
|
16 |
prompt,
|
17 |
+
generation_config=generation_config,
|
18 |
+
num_patches_list=num_patches_list,
|
19 |
history=None,
|
20 |
return_history=True
|
21 |
)
|
|
|
28 |
outputs="text",
|
29 |
title="InternVL3 AR Evaluation (Single-turn)",
|
30 |
description="Upload a short AR video clip. The model will sample frames and assess occlusion/rendering quality."
|
31 |
+
).launch()
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -19,4 +19,5 @@ pillow>=10.0.0
|
|
19 |
sentencepiece>=0.1.99
|
20 |
einops
|
21 |
timm
|
22 |
-
Pillow
|
|
|
|
19 |
sentencepiece>=0.1.99
|
20 |
einops
|
21 |
timm
|
22 |
+
Pillow
|
23 |
+
flash-attn
|