File size: 5,273 Bytes
8e70e09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import yaml
import fitz
import torch
import gradio as gr
from PIL import Image
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain.document_loaders import PyPDFLoader
from langchain.prompts import PromptTemplate
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import spaces
from langchain_text_splitters import CharacterTextSplitter, RecursiveCharacterTextSplitter

class RAGbot:
    def __init__(self, config_path="config.yaml"):
        self.processed = False
        self.page = 0
        self.chat_history = []
        self.prompt = None
        self.documents = None
        self.embeddings = None
        self.vectordb = None
        self.tokenizer = None
        self.model = None
        self.pipeline = None
        self.chain = None
        self.chunk_size = 512
        self.overlap_percentage = 50
        self.max_chunks_in_context = 2
        self.current_context = None
        self.model_temperatue = 0.5
        self.format_seperator = "\n\n--\n\n"
        self.pipe = None

        with open(config_path, "r") as file:
            config = yaml.safe_load(file)
            self.model_embeddings = config["modelEmbeddings"]
            self.auto_tokenizer = config["autoTokenizer"]
            self.auto_model_for_causal_lm = config["autoModelForCausalLM"]

    def load_embeddings(self):
        self.embeddings = HuggingFaceEmbeddings(model_name=self.model_embeddings)
        print("Embedding model loaded")

    def load_vectordb(self):
        overlap = int((self.overlap_percentage / 100) * self.chunk_size)
        text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=self.chunk_size,
            chunk_overlap=overlap,
            length_function=len,
            add_start_index=True,
        )
        docs = text_splitter.split_documents(self.documents)
        self.vectordb = Chroma.from_documents(docs, self.embeddings)
        print("Vector store created")

    @spaces.GPU
    def load_tokenizer(self):
        self.tokenizer = AutoTokenizer.from_pretrained(self.auto_tokenizer)

    @spaces.GPU
    def create_organic_pipeline(self):
        self.pipe = pipeline(
            "text-generation",
            model=self.auto_model_for_causal_lm,
            model_kwargs={"torch_dtype": torch.bfloat16},
            device="cuda",
        )
        print("Model pipeline loaded")

    def get_organic_context(self, query):
        documents = self.vectordb.similarity_search_with_relevance_scores(query, k=self.max_chunks_in_context)
        context = self.format_seperator.join([doc.page_content for doc, score in documents])
        self.current_context = context
        print("Context Ready")
        print(self.current_context)

    @spaces.GPU
    def create_organic_response(self, history, query):
        self.get_organic_context(query)
        messages = [
            {"role": "system", "content": "From the context given below, answer the user's question\n" + self.current_context},
            {"role": "user", "content": query},
        ]

        prompt = self.pipe.tokenizer.apply_chat_template(
            messages,
            tokenize=False,
            add_generation_prompt=True
        )
        temp = 0.1
        outputs = self.pipe(
            prompt,
            max_new_tokens=1024,
            do_sample=True,
            temperature=temp,
            top_p=0.9,
        )
        print(outputs)
        return outputs[0]["generated_text"][len(prompt):]

    def process_file(self, file):
        self.documents = PyPDFLoader(file.name).load()
        self.load_embeddings()
        self.load_vectordb()
        self.create_organic_pipeline()

    @spaces.GPU
    def generate_response(self, history, query, file, chunk_size, chunk_overlap_percentage, model_temperature, max_chunks_in_context):
        self.chunk_size = chunk_size
        self.overlap_percentage = chunk_overlap_percentage
        self.model_temperatue = model_temperature
        self.max_chunks_in_context = max_chunks_in_context

        if not query:
            raise gr.Error(message='Submit a question')
        if not file:
            raise gr.Error(message='Upload a PDF')
        if not self.processed:
            self.process_file(file)
            self.processed = True

        result = self.create_organic_response(history="", query=query)
        for char in result:
            history[-1][-1] += char
        return history, ""

    def render_file(self, file, chunk_size, chunk_overlap_percentage, model_temperature, max_chunks_in_context):
        print(chunk_size)
        doc = fitz.open(file.name)
        page = doc[self.page]
        self.chunk_size = chunk_size
        self.overlap_percentage = chunk_overlap_percentage
        self.model_temperatue = model_temperature
        self.max_chunks_in_context = max_chunks_in_context
        pix = page.get_pixmap(matrix=fitz.Matrix(300 / 72, 300 / 72))
        image = Image.frombytes('RGB', [pix.width, pix.height], pix.samples)
        return image

    def add_text(self, history, text):
        if not text:
            raise gr.Error('Enter text')
        history.append((text, ''))
        return history