File size: 8,425 Bytes
73d2546
 
 
 
 
 
 
 
 
99b6299
73d2546
99b6299
 
 
73d2546
 
99b6299
 
73d2546
 
 
99b6299
73d2546
 
 
 
 
99b6299
 
 
73d2546
 
 
99b6299
 
 
 
73d2546
 
99b6299
 
 
 
73d2546
99b6299
 
 
 
 
73d2546
99b6299
 
 
 
 
 
 
 
73d2546
 
 
 
 
 
99b6299
 
73d2546
 
 
99b6299
73d2546
 
 
99b6299
 
73d2546
 
 
 
 
 
 
 
 
 
 
 
 
99b6299
73d2546
 
 
 
 
 
 
 
 
 
99b6299
 
 
 
 
 
 
 
 
 
73d2546
 
 
99b6299
73d2546
99b6299
73d2546
 
 
 
 
 
 
 
 
 
 
 
 
99b6299
73d2546
 
 
 
99b6299
 
73d2546
 
 
99b6299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73d2546
 
99b6299
 
 
73d2546
99b6299
73d2546
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import gradio as gr
import os
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.embeddings import HuggingFaceEmbeddings 
from langchain_community.llms import HuggingFaceEndpoint
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from dotenv import load_dotenv
import torch

# Load environment variables
load_dotenv()
api_token = os.getenv("HF_TOKEN")

# List of available LLMs
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]

# Load and split PDF document
def load_doc(list_file_path, chunk_size=1024, chunk_overlap=64):
    loaders = [PyPDFLoader(x) for x in list_file_path]
    pages = []
    for loader in loaders:
        pages.extend(loader.load())
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=chunk_size,
        chunk_overlap=chunk_overlap
    )
    doc_splits = text_splitter.split_documents(pages)
    return doc_splits

# Create vector database with improved embedding model and parameters
def create_db(splits, n_trees=5, search_k=100):
    embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
    vectordb = FAISS.from_documents(splits, embeddings, n_trees=n_trees, search_k=search_k)
    return vectordb

# Query expansion and document filtering functions
def expand_query(query):
    expanded_queries = [query, query + " additional term", query + " another term"]
    return expanded_queries

def filter_documents(docs):
    filtered_docs = [doc for doc in docs if "important" in doc.page_content]
    return filtered_docs

# Initialize langchain LLM chain with query expansion and document filtering
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
    llm = HuggingFaceEndpoint(
        repo_id=llm_model,
        huggingfacehub_api_token=api_token,
        temperature=temperature,
        max_new_tokens=max_tokens,
        top_k=top_k,
    )

    memory = ConversationBufferMemory(
        memory_key="chat_history",
        output_key='answer',
        return_messages=True
    )

    retriever = vector_db.as_retriever()

    qa_chain = ConversationalRetrievalChain.from_llm(
        llm,
        retriever=retriever,
        chain_type="stuff",
        memory=memory,
        return_source_documents=True,
        verbose=False,
        query_expansion=expand_query,
        document_filtering=filter_documents
    )
    return qa_chain

# Initialize database
def initialize_database(list_file_obj, progress=gr.Progress()):
    list_file_path = [x.name for x in list_file_obj if x is not None]
    doc_splits = load_doc(list_file_path)
    vector_db = create_db(doc_splits)
    return vector_db, "Database created!"

# Initialize LLM
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
    llm_name = list_llm[llm_option]
    print("llm_name: ", llm_name)
    qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
    return qa_chain, "QA chain initialized. Chatbot is ready!"

def format_chat_history(message, chat_history):
    formatted_chat_history = []
    for user_message, bot_message in chat_history:
        formatted_chat_history.append(f"User: {user_message}")
        formatted_chat_history.append(f"Assistant: {bot_message}")
    return formatted_chat_history

# Read persona from .md file
def load_persona(file_path):
    with open(file_path, 'r') as file:
        return file.read()

# Inject persona into response
def persona_template(response_text, persona_text):
    return f"{persona_text}\n\n{response_text}"

def conversation(qa_chain, message, history, persona_text):
    formatted_chat_history = format_chat_history(message, history)
    response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
    response_answer = response["answer"]
    if "Helpful Answer:" in response_answer:
        response_answer = response_answer.split("Helpful Answer:")[-1]
    response_answer = persona_template(response_answer, persona_text)
    response_sources = response["source_documents"]
    response_source1 = response_sources[0].page_content.strip()
    response_source2 = response_sources[1].page_content.strip()
    response_source3 = response_sources[2].page_content.strip()
    response_source1_page = response_sources[0].metadata["page"] + 1
    response_source2_page = response_sources[1].metadata["page"] + 1
    response_source3_page = response_sources[2].metadata["page"] + 1
    new_history = history + [(message, response_answer)]
    return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page

def upload_file(file_obj):
    list_file_path = []
    for idx, file in enumerate(file_obj):
        file_path = file.name
        list_file_path.append(file_path)
    return list_file_path

def demo():
    persona_text = load_persona('persona.md')

    with gr.Blocks(theme=gr.themes.Default(primary_hue="sky")) as demo:
        vector_db = gr.State()
        qa_chain = gr.State()
        gr.HTML("<center><h1>RAG PDF Chatbot</h1><center>")
        gr.Markdown("""<b>Interact with Your PDF Documents!</b> This AI agent performs retrieval-augmented generation (RAG) on PDF documents. Hosted on Hugging Face Hub for demonstration purposes. \
        <b>Do not upload confidential documents.</b>""")
        
        # Interface for static pre-selected documents
        gr.Markdown("<b>Pre-Selected Documents</b>")
        gr.Textbox(value="Document 1: Introduction to AI.pdf", show_label=False, interactive=False)
        gr.Textbox(value="Document 2: Advanced Machine Learning.pdf", show_label=False, interactive=False)
        
        gr.Markdown("<b>Upload Your PDF Documents</b>")
        document = gr.Files(height=300, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF documents")
        db_btn = gr.Button("Create vector database")
        db_progress = gr.Textbox(value="Not initialized", show_label=False)

        gr.Markdown("<b>Select Large Language Model (LLM) and Configure Parameters</b>")
        llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value=list_llm_simple[0], type="index")
        slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.5, step=0.1, label="Temperature", info="Controls randomness in token generation", interactive=True)
        slider_maxtokens = gr.Slider(minimum=128, maximum=9192, value=4096, step=128, label="Max New Tokens", info="Maximum number of tokens to be generated", interactive=True)
        slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="Top-K", info="Number of tokens to select the next token from", interactive=True)
        qachain_btn = gr.Button("Initialize Question Answering Chatbot")
        llm_progress = gr.Textbox(value="Not initialized", show_label=False)
        
        gr.Markdown("<b>Chat with Your Document</b>")
        chatbot = gr.Chatbot(height=505)
        msg = gr.Textbox(placeholder="Ask a question", container=True)
        submit_btn = gr.Button("Submit")
        clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
        
        # Bind the events
        db_btn.click(initialize_database, inputs=[document], outputs=[vector_db, db_progress])
        qachain_btn.click(initialize_LLM, inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], outputs=[qa_chain, llm_progress]).then(lambda: [None, "", 0, "", 0, "", 0],
            inputs=None,
            outputs=[chatbot, None, None, None, None, None, None],
            queue=False)

        msg.submit(conversation, inputs=[qa_chain, msg, chatbot, persona_text], outputs=[qa_chain, msg, chatbot, None, None, None, None], queue=False)
        submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot, persona_text], outputs=[qa_chain, msg, chatbot, None, None, None, None], queue=False)
        clear_btn.click(lambda: [None, "", 0, "", 0, "", 0], inputs=None, outputs=[chatbot])

    demo.queue().launch(debug=True)

if __name__ == "__main__":
    demo()