Keeping Neural Networks Simple by Minimizing
the Description Length of the Weights

Geoffrey E. Hinton and Drew van Camp
Department of Computer Science
University of Toronto
10 King’s College Road
Toronto M5S 1A4, Canada

Abstract

Supervised neural networks generalize well if
there is much less information in the weights
than there 1s in the output vectors of the train-
ing cases. So during learning, it is impor-
tant to keep the weights simple by penaliz-
ing the amount of information they contain.
The amount of information in a weight can
be controlled by adding Gaussian noise and
the noise level can be adapted during learning
to optimize the trade-off between the expected
squared error of the network and the amount
of information in the weights. We describe
a method of computing the derivatives of the
expected squared error and of the amount of
information in the noisy weights in a net-
work that contains a layer of non-linear hidden
units. Provided the output units are linear, the
exact derivatives can be computed efficiently
without time-consuming Monte Carlo simula-
tions. The idea of minimizing the amount of
information that is required to communicate
the weights of a neural network leads to a
number of interesting schemes for encoding the
weights.

1 Introduction

In many practical learning tasks there is little available
training data so any reasonably complicated model will
tend to overfit the data and give poor generalization to
new data. To avoid overfitting we need to ensure that
there is less information in the weights than there is in
the output vectors of the training cases. Researchers
have considered many possible ways of limiting the in-
formation in the weights:

o Limit the number of connections in the network
(and hope that each weight does not have too much
information in it).

e Divide the connections into subsets, and force the
weights within a subset to be identical. If this
“weight-sharing” is based on an analysis of the nat-
ural symmetries of the task it can be very effective

(Lang, Waibel and Hinton (1990); LeCun 1989).

e Quantize all the weights in the network so that a
probability mass, p, can be assigned to each quan-
tized value. The number of bits in a weight is then
—log p, provided we ignore the cost of defining the
quantization. Unfortunately this method leads to
a difficult search space because the cost of a weight
does not have a smooth derivative.

2 Applying the Minimum Description
Length Principle

When fitting models to data, it 1s always possible to fit
the training data better by using a more complex model,
but this may make the model worse at fitting new data.
So we need some way of deciding when extra complex-
ity in the model is not worth the improvement in the
data-fit. The Minimum Description Length Principle
(Rissanen, 1986) asserts that the best model of some
data is the one that minimizes the combined cost of
describing the model and describing the misfit between
the model and the data. For supervised neural networks
with a predetermined architecture, the model cost is the
number of bits it takes to describe the weights, and the
data-misfit cost is the number of bits it takes to describe
the discrepancy between the correct output and the out-
put of the neural network on each training case. We can
think in terms of a sender who can see both the input
vector and the correct output and a receiver who can
only see the input vector. The sender first fits a neural
network, of pre-arranged architecture, to the complete
set of training cases, then sends the weights to the re-
ceiver. For each training case the sender also sends the
discrepancy between the net’s output and the correct
output. By adding this discrepancy to the output of
the net, the receiver can generate ezactly the correct
output.

-t =

Figure 1: This shows the probability mass asso-
ciated with a quantized value, v, using a quan-
tization width ¢. If ¢ is much narrower than the
Gaussian distribution, the probability mass is well
approximated by the product of the height and the
width, so the log probability is a sum of two terms.
The logt term is a constant, and if the distribu-
tion is a zero-mean Gaussian, the log of the height
is proportional to v?.

3 Coding the data misfits

To apply the MDL principle we need to decide on a
coding scheme for the data misfits and for the weights.
Clearly, if the data misfits are real numbers, an infinite
amount of information is needed to convey them. So we
shall assume that they are very finely quantized, using
intervals of fixed width {. We shall also assume that
the data misfits are encoded separately for each of the
output units.

The coding theorem tells us that if a sender and a re-
ceiver have agreed on a probability distribution that as-
signs a probability mass, p(Ay), to each possible quan-
tized data misfit, Ay, then we can code the misfit using
—log, p(Ay) bits. If we want to minimize the expected
number of bits, the best probability distribution to use
is the correct one, but any other agreed distribution can
also be used. For convenience, we shall assume that for
output unit j the data misfits are encoded by assuming
that they are drawn from a zero-mean Gaussian distri-
bution with standard deviation, ¢;. Provided that o; is
large compared with the quantization width ¢, the as-
sumed probability of a particular data misfit between
the desired output, d$ on training case ¢ and the actual
output y§ is then Wel]l approximated by the probability
mass shown in figure 1.

e e 1 —(df — v)"
p(dj - yj) - t\/ﬁO’j exp l 20_]2 (1)

Using an optimal code, the description length of a data
misfit, d§ —y5, in units of log,(e) bits (called “nats”) is:

(45 — 45)°
2
20'j
(2)
To minimize this description length summed over all N
training cases, the optimal value of ¢; is the root mean

—logp(dj —y;) = —logt+log V2r+logo;+

square deviation of the misfits from zero.! Using this
value of ¢; and summing over all training cases the last
term of equation 2 becomes a constant and the data
misfit cost is:

c

N 1 c <
Cdata-misfit = ¥V + D) log [ﬁ Z(dj - yj)zl (3)

where £ 1s a constant that depends only on ¢.

Independently of whether we use the optimal value or
a predetermined value for o, it is apparent that the
description length is minimized by minimizing the usual
squared error function, so the Gaussian assumptions we
have made about coding can be viewed as the MDL
justification of this error function.

4 A simple method of coding the
weights

We could code the weights in just the same way as we
code the data misfits. We assume that the weights of
the trained network are finely quantized and come from
a zero-mean Gaussian distribution. If the standard de-
viation, o, of this distribution is fixed in advance, the
description length of the weights is simply proportional
to the sum of their squares. So, assuming we use a Gaus-
sian with standard deviation o; for encoding the output
errors, we can minimize the total description length of
the data misfits and the weights by minimizing the sum
of two terms:

1 1
C= Zr‘?Z(dj_yj)z + ﬂzw?j (4)
7 c

where ¢ is an index over training cases.

This is just the standard “weight-decay” method. The
fact that weight-decay improves generalization (Hinton,
1987) can therefore be viewed as a vindication of this
crude MDL approach in which the standard deviations
of the gaussians used for coding the data misfits and the
weights are both fixed in advance.?

An elaboration of standard weight-decay is to assume
that the distribution of weights in the trained network
can be modelled more accurately by using a mixture
of several Gaussians whose means, variances and mix-
ing proportions are adapted as the network is trained

If the optimal value of o is to be used, it must be com-
municated before the data misfits are sent, so it too must be
coded. However, since it is only one number we are probably
safe in ignoring this aspect of the total description length.

It is clear from equation 4 that it is only the ratio of
the variances of the two Gaussians that matters. Rather
than guessing this ratio, it is usually better to estimate it by
seeing which ratio gives optimal performance on a validation
set.

(Nowlan and Hinton, 1992). For some tasks this more
elaborate way of coding the weights gives considerably
better generalization. This is especially true when only
a small number of different weight values are required.

However, this more elaborate scheme still suffers from
a serious weakness: It assumes that all the weights are
quantized to the same tolerance, and that this tolerance
1s small compared with the standard deviations of the
Gaussians used for modelling the weight distribution.
Thus 1t takes into account the probability density of a
weight (the height in figure 1) but it ignores the pre-
cision (the width). This is a terrible waste of bits. A
network is clearly much more economical to describe if
some of the weight values can be described very impre-
cisely without significantly affecting the predictions of
the network.

MacKay (1992) has considered the effects of small
changes in the weights on the outputs of the network
after the network has been trained. The next section
describes a method of taking the precision of the weights
into account during training so that the precision of a
weight can be traded against both its probability den-
sity and the excess data misfit caused by imprecision in
the weight.

5 Noisy weights

A standard way of limiting the amount of information in
a number is to add zero-mean Gaussian noise. At first
sight, a noisy weight seems to be even more expensive
to communicate than a precise one since it appears that
we need to send a variance as well as a mean, and that
we need to decide on a precision for both of these. As we
shall see, however, the MDL framework can be adapted
to allow very noisy weights to be communicated very
cheaply.

When using backpropagation to train a feedforward
neural network, it is standard practice to start at some
particular point in weight space and to move this point
in the direction that reduces the error function. An al-
ternative approach 1s to start with a multivariate Gaus-
sian distribution over weight vectors and to change both
the mean and the variance of this cloud of weight vec-
tors so as to reduce some cost function. We shall restrict
ourselves to distributions in which the weights are inde-
pendent, so the distribution can be represented by one
mean and one variance per weight.

The cost function is the expected description length of
the weights and of the data misfits. It turns out that
high-variance weights are cheaper to communicate but
they cause extra variance in the data misfits thus mak-
ing these misfits more expensive to communicate.

5.1 The expected description length of the
weights

We assume that the sender and the receiver have an
agreed Gaussian prior distribution, P, for a given

weight. After learning, the sender has a Gaussian pos-
terior distribution, @, for the weight. We describe a
method of communicating both the weights and the
data misfits and show that using this method the num-
ber of bits required to communicate the posterior distri-
bution of a weight is equal to the asymmetric divergence
(the Kullback-Liebler distance) from P to Q.

G(P.Q) = [Qutos %dw (5)

5.2 The “bits back” argument

To communicate a set of noisy weights, the sender first
collapses the posterior probability distribution for each
weight by using a source of random bits to pick a precise
value for the weight (to within some very fine tolerance
t). The probability of picking each possible value is de-
termined by the posterior probability distribution for
the weight. The sender then communicates these pre-
cise weights by coding them using some prior Gaussian
distribution, P, so that the communication cost of a
precise weight, w, is:

C(w) = —logt — log P(w) (6)

t must be small compared with the variance of P so
C'(w) is big. However, as we shall see, we are due for a
big refund at the end.

Having sent the precise weights, the sender then com-
municates the data-misfits achieved using those weights.
Having received the weights and the misfits, the receiver
can then produce the correct outputs. But he can also
do something else. Once he has the correct outputs he
can run whatever learning algorithm was used by the
sender and recover the exact same posterior probability
distribution, @), that the sender collapsed in order to get
the precise weights.? Now, since the receiver knows the
sender’s posterior distribution for each weight and he
knows the precise value that was communicated, he can
recover all the random bits that the sender used to col-
lapse that distribution to that value. So these random
bits have been successfully communicated and we must
subtract them from the overall communication cost to
get the true cost of communicating the model and the
misfits. The number of random bits required to collapse
the posterior distribution for a weight, @, to a particular
finely quantized value, w, is:

R(w) = —logt —log Q(w) (7)

So the true expected description length for a noisy
weight is determined by taking an expectation, under
the distribution @ :

1f the sender used random initial weights these can be
communicated at a net cost of O bits using the method that
is being explained.

G(P’Q):<C(w)—R(w)>=/Q(w)log %dw (8)

For Gaussians with different means and variances, the
asymmetric divergence is

Iz 1
G(P,Q)=1log £ + 2—2[05—05 + (p — 1g)°] (9)
O'q 0'p

5.3 The expected description length of the
data misfits

To compute the data-misfit cost given in equation 3 we
need the expected value of (d;—yj)z. This squared error
is caused partly by the systematic errors of the network
and partly by the noise in the weights. Unfortunately,
for general feedforward networks with noisy weights, the
expected squared errors are not easy to compute. Linear
approximations are possible if the level of noise in the
weights is sufficiently small compared with the smooth-
ness of the non-linearities, but this defeats one of the
main purposes of the idea which is to allow very noisy
weights. Fortunately, if there is only one hidden layer
and if the output units are linear, it is possible to com-
pute the expected squared error exactly.

The weights are assumed to have independent Gaussian
noise, so for any input vector we can compute the mean
Ha,, and variance, Vi, , of the Gaussian-distributed to-
tal input, z, received by hidden unit k. Using a table,
we can then compute the mean, y,, and variance, Vy,,
of the output of the hidden unit, even though this out-
put is not Gaussian distributed. A lot of computation
is required to create this two-dimensional table since
many different pairs of p,, and V;, must be used, and
for each pair we must use Monte Carlo sampling or nu-
merical integration to compute ji,, and Vy,. Once the
table is built, however, it is much more efficient than
using Monte Carlo sampling at runtime.

Since the noise in the outputs of the hidden units is
independent, they independently contribute variance to
each linear output unit. The noisy weights, wy;, also
contribute variance to the output units. Since the out-
put units are linear, their outputs, y;, are equal to the
total inputs they receive, z;. On a particular training
case, the output, y;, of output unit j is a random vari-
able with the following mean and variance:

Hy;

Z/’Lyh/’twhj (10)
h

Vi Z {“ihj Vo + “zz/h Van, + Vo Vo, | (11)
h

The mean and the variance of the activity of output
unit j make independent contributions to the expected
squared error (E;). If the desired output of j on a par-
ticular training case is d;, (E;) is given by:

(Bj) = ((dj —y;)*) = (dj — py;)* + V4 (12)

So, for each input vector, we can use the table and the
equations above to compute the exact value of (E;). We
can also backpropagate the exact derivatives of £ =

Zj<EJ> provided we first build another table to allow

derivatives to be backpropagated through the hidden
units. As before, the table is indexed by y,, and Vi, but
for the backward pass each cell of the table contains the
four partial derivatives that are needed to to convert the
output derivatives of h into its input derivatives using
the equations:

OF OF Ouy o8 oV,
aﬂxh B aﬂyh aﬂxh + aVyh aﬁ‘xh (13)
o OF Opy, o8 oV,

= 14
v, oo ., toan o, W

6 Letting the data determine the prior

So far, we have assumed that the “prior” distribution
that is used for coding the weights is a single Gaussian.
This coding-prior must be known to both the sender
and the receiver before the weights are communicated.
If we fix its mean and variance in advance we could pick
inappropriate values that make it very expensive to code
the actual weights. We therefore allow the mean and
variance of the coding-prior to be determined during
the optimization process, so the coding-prior depends
on the data. This is a funny kind of prior! We could try
to make sense of it in Bayesian terms by assuming that
we start with a hyper-prior that specifies probability
distributions for the mean and variance of the coding-
prior and then we use the hyper-prior and the data to
find the best coding-prior. This would automatically
take into account the cost of communicating the coding-
prior to a receiver who only knows the hyper-prior. In
practice, we just ignore the cost of communicating the
two parameters of the coding-prior so we do not need
to invent hyper-priors.

6.1 A more flexible prior distribution for the
weights

If we use a single Gaussian prior for communicating the
noisy weights, we get a relatively simple penalty term,
the asymmetric divergence, for the posterior distribu-
tion of each noisy weight. Unfortunately, this coding
scheme 18 not flexible enough to capture certain kinds
of common structure in the weights. Suppose, for ex-
ample, that we want a few of the weights to have values
near 1 and the rest to have values very close to 0. If
the posterior distribution for each weight has low vari-
ance (to avoid the extra squared error caused by noise
in the weights) we inevitiably pay a high code cost for
weights because no single Gaussian prior can provide a
good model of a spike around 0 and a spike around 1.

If we know in advance that different subsets of the
weights are likely to have different distributions, we can
use different coding-priors for the different subsets. As
MacKay (1992) has demonstrated, it makes sense to use
different coding-priors for the input-to-hidden weights
and the hidden-to-output weights since the input and
output values may have quite different scales. If we do
not know in advance which weights should be similar,
we can model the weight distribution by an adaptive
mixture of Gaussians as proposed by Nowlan and Hin-
ton (1992). During the optimization, the means, vari-
ances and mixing proportions in the mixture adapt to
model the clusters in the weight values. Simultaneously,
the weights adapt to fit the current mixture model so
weights get pulled towards the centers of nearby clus-
ters. Suppose, for eaxample, that there are two Gaus-
sians in the mixture. If one gaussian has mean 1 and
low variance and the other gaussian has mean 0 and low
variance it is very cheap to encode low-variance weights
with values near 1 or 0.

Nowlan and Hinton (1992) implicitly assumed that the
posterior distribution for each weight has a fixed and
negligible variance so they focussed on maximizing the
probability density of the mean of the weight under the
coding-prior mixture distribution. We now show how
their technique can be extended to take into account the
variance of the posterior distributions for the weights,
assuming that the posterior distributions are still con-
strained to be single Gaussians. As before, we ignore the
cost of communicating the mixture distribution that is
to be used for coding the weights.

The mixture prior has the form:

P(w) = Zmpi(w) (15)

where 7; is the mixing proportion of Gaussian F;. The
asymmetric divergence between the mixture prior and
the single Gaussian posterior,), for a noisy weight is

Q(w)
22 miPi(w)

The sum inside the log makes this hard to integrate ana-
lytically. This is unfortunate since the optimization pro-
cess requires that we repeatedly evaluate both G(P, Q)
and its derivatives with respect to the parameters of
P and @. Fortunately, there is a much more tractable
expression which is an upper bound on G and can there-
fore be used in its place. This expression is in terms of
the G;(F;, Q) the asymmetric divergences between the
posterior distribution, @), and each of the Gaussians, F;,
in the mixture prior.

G(P.Q) = / Q(w) log dw (16)

G(PlaPQ"'aQ):_logzﬂ-ie_Gl (17)

The way in which G depends on the G; in equation
17 is precisely analogous to the way in which the free

energy of a system depends on the energies of the various
alternative configurations of the system. Indeed, one
way to derive equation 17 is to define a coding scheme
in which the code cost resembles a free energy and to
then use a lemma from statistical mechanics.

7 A coding scheme that uses a mixture
of Gaussians

Suppose that a sender and a receiver have already
agreed on a particular mixture of Gaussians distribu-
tion. The sender can now send a sample from the pos-
terior Gaussian distribution of a weight using the fol-
lowing coding scheme:

1. Randomly pick one of the Gaussians in the mixture
with probability r; given by

me—G’

= =G
> miem
2. Communicate the choice of Gaussian to the re-
ceiver. If we use the mixing proportions as a prior

for communicating the choice, the expected code
cost 1s

(18)

Ti

1
Zri log; (19)

. 2
2
3. Communicate the sample value to the receiver us-
ing the chosen Gaussian. If we take into account
the random bits that we get back when the receiver
reconstructs the posterior distribution from which
the sample was chosen, the expected cost of com-
municating the sample is

Z riG; (20)
So the expected cost of communicating both the
choice of Gaussian and the sample value given that

choice 1s

1 _G,

Zi:rlGl—i—Zi:mlog - _Zm(log mie™™1)
(21)
4. After receiving samples from all the posterior
weight distributions and also receiving the errors on
the training cases with these sampled weights, the
receiver can run the learning algorithm and recon-
struct the posterior distributions from which the
weights are sampled. This allows the receiver to
reconstruct all of the (G; and hence to reconstruct
the random bits used to choose a Gaussian from the
mixture. So the number of “bits back” that must

be subtracted from the expected cost in equation
21 1s

K3

1
H= Z rilog — (22)

We now use a lemma from statistical mechanics to get a
simple expression for the expected code cost minus the

bits back.

7.1 A lemma from statistical mechanics

For a physical system at a temperature of 1, the
Helmholtz free energy, F', is defined as the expected
energy minus the entropy

F = ZriEi—Zrilog% (23)

where 7 i1s an index over the alternative possible states
of the system, E; 1s the energy of a state, and r; is the
probability of a state. F' is a function of the probabil-
ity distribution over states and the probability distribu-
tion which minimizes F' is the Boltzmann distribution in
which probabilities are exponentially related to energies

e~ Fi
J

At the minimum given by the Boltzmann distribution,
the free energy is equal to minus the log of the partition
function:

F=—logy e (25)

If we equate each Gaussian in the mixture with an al-
ternative state of a physical system, we can equate e~ F
with m;e =%, So our method of picking a Gaussian from
the mixture uses a Boltzmann distribution because it
makes r; proportional to e~F¢. The random bits that
are successfully communicated when the receiver recon-
structs the probabilities r; correspond exactly to the en-
tropy of the Boltzmann distribution, so the total code
cost (including the bits back) is equivalent to F' and is
therefore equal to the expression given in equation 17.

8 Implementation

With an adaptive mixture of Gaussians coding-prior,
the derivatives of the cost function are moderately com-
plicated so it is easy to make an error in implementing
them. This is worrying because gradient descent algo-
rithms are quite robust against minor errors. Also, it
is hard to know how large to make the tables that are
used for propagating Gaussian distributions through lo-
gistic functions or for backpropagating derivatives. To
demonstrate that the implementation was correct and
to decide the table sizes we used the following semantic
check. We change each parameter by a small step and
check that the cost function changes by the product of
the gradient and step size. Using this method we found
that a 300 x 300 table with linear interpolation gives
reasonably accurate derivatives.

9 Preliminary Results

We have not yet performed a thorough comparison be-
tween this algorithm and alternative methods and it
may well turn out that further refinements are required
to make it competitive. We have, however, tried the
algorithm on one very high dimensional task with very
scarce training data. The task is to predict the effec-
tiveness of a class of peptide molecules. Each molecule
is described by 128 parameters (the input vector) and
has an effectiveness that is a single scalar (the ouput
value). All inputs and outputs were normalized to have
zero mean and unit variance so that the weights could
be expected to have similar scales. The training set con-
sisted of 105 cases and the test set was the remaining
420 cases. We deliberately chose a very small training
set since these are the circumstances in which it should
be most helpful to control the amount of information in
the weights. We tried a network with 4 hidden units.
This network contains 521 adaptive weights (including
the biases of the output and hidden units) so it overfits
the 105 training cases very badly if we do not limit the
information in the weights.

We used an adaptive mixture of b (Gaussians as our
coding-prior for the weights. The Gaussians were ini-
tialized with means uniformly spaced between —0.24
and 4+0.24 and separated by 2 standard deviations from
their neighbors. The initial means for the posterior dis-
tributions of each weight were chosen from a Gaussian
with mean 0 and standard deviation 0.15. The stan-
dard deviations of the posteriors for the weights were
all initialized at 0.1.

We optimize all of the parameters simultaneously us-
ing a conjugate gradient method. For the variances we
optimize the log variance so that it cannot go negative
and cannot collapse to zero. To ensure that the mix-
ing proportions of the Gaussians in the coding-prior lie
between 0 and 1 and add to 1 we optimize the z; where

e’i

= —Z] o

If we penalize the weights by the full cost of describing
them, the optimization quickly makes all of the weights
equal and negative and uses the bias of the output unit
to fix the output at the mean of the desired values in
the training set. It seems that it is initially very easy to
reduce the combined cost function by using weights that
contain almost no information, and it is very hard to es-
cape from this poor solution. To avoid this trap, we mul-
tiply the cost of the weights by a coefficent that starts at
.05 and gradually increases to 1 according to the sched-
ule .05, .1,.15,.2,.3,.4,.5,.6,.7,.8,.9,1.0. At each value
of the coeflicient we do 100 conjugate gradient updates
of the weights and at the final value of 1.0 we do not ter-
minate the optimization until the cost function changes
by less than 107° nats (a nat is log,(e) bits). Figure
2 shows all the incoming and outgoing weights of the
four hidden units after one run of the optimization. It

(26)

Urs

| W

I

[
il

Ml

“

|

Figure 2: The final weights of the network. Each
large block represents one hidden unit. The small
black or white rectangles represent negative or
positive weights with the area of a rectangle rep-
resenting the magnitude of the weight. The bot-
tom 12 rows in each block represent the incoming
weights of the hidden unit. The central weight at
the top of each block is the weight from the hidden
unit to the linear output unit. The weight at the
top-right of a block is the bias of the hidden unit.

f
[
F
|‘
|’
f
/

-2 2

Figure 3: The final probability distribution that
is used for coding the weights. This distribution
is implemented by adapting the means, variances
and mixing proportions of five gaussians.

is clear that the weights form three fairly sharp clus-
ters. Figure 3 shows that the mixture of 5 Gaussians
has adapted to implement the appropriate coding-prior
for this weight distribution.

The performance of the network can be measured by
comparing the squared error 1t achieves on the test data
with the error that would be achieved by simply guess-
ing the mean of the correct answers for the test data:

Zc(dc - yc)2
S~ d)? 27

We ran the optimization five times using different ran-
domly chosen values for the initial means of the noisy
weights. For the network that achieved the lowest value
of the overall cost function, the relative error was 0.286.
This compares with a relative error of 0.967 for the same
network when we used noise-free weights and did not
penalize their information content. The best relative
error obtained using simple weight-decay with four non-
linear hidden units was .317. This required a carefully
chosen penalty coefficient for the squared weights that
corresponds to 0']2»/0'3, in equation 4. To set this weight-
decay coefficient appropriately 1t was necessary to try
many different values on a portion of the training set
and to use the remainder of the training set to decide
which coefficient gave the best generalization. Once the
best coefficient had been determined the whole of the
training set was used with this coefficient. A lower er-
ror of 0.291 can be achieved using weight-decay if we
gradually increase the weight-decay coefficient and pick
the value that gives optimal performance on the test
data. But this is cheating. Linear regression gave a
huge relative error of 35.6 (gross overfitting) but this
fell to 0.291 when we penalized the sum of the squares
of the regression coefficients by an amount that was cho-
sen to optimize performance on the test data. This is
almost identical to the performance with 4 hidden units
and optimal weight-decay probably because, with small
weights, the hidden units operate in their central linear
range, so the whole network is effectively linear.

Relative Error =

These preliminary results demonstrate that our new
method allows us to fit quite complicated non-linear
models even when the number of training cases is less
than the number of dimensions in the input vector.
The results also show that the new method is slightly
better than simple weight-decay on at least one task.
Much more experimental work is required to decide
whether the method is competitive with other statis-
tical techniques for handling non-linear tasks in which
the amount of training data is very small compared with
the dimensionality of the input. It is also worth men-
tioning that the solution with the lowest value of the
total description length was the solution in which all
the weights except the output bias are equal and nega-
tive. This solution has a relative error of approximately
1.0 so it 1s a serious embarrassment for the Minimum
Description Length Principle or for our method of de-
scribing the weights.

10 Discussion

There 1s a correct, but intractable, Bayesian method
of determining the weights in a feedforward neural net-
work. We start with a prior distribution over all possible
points in weight space. We then construct the correct
posterior distribution at each point in weight space by
multiplying the prior by the probability of getting the
outputs in the training set given those weights.* Fi-
nally we normalize to get the full posterior distribution.
Then we use this distribution of weight values to make
predictions for new input vectors.

In practice, the closest we can get to the ideal Bayesian
method is to use a Monte Carlo method to sample from
the posterior distribution. This could be done by con-
sidering random moves in weight space and accepting a
move with a probability that depends on how well the
resulting network fits the desired outputs. Neal (1993)
shows how the gradient information provided by back-
propagation can be used to get a much more efficient
method of obtaining samples from the posterior distri-
bution. The major advantage of Monte Carlo meth-
ods 1s that they do not impose unrealistically simple
assumptions about the shape of the posterior distribu-
tion in weight space.

If we are willing to make simplifying assumptions about
the posterior distribution, time-consuming Monte Carlo
simulations can be avoided. MacKay (1992) finds a sin-
gle locally optimal point in weight space and constructs
a full covariance Gaussian approximation to the pos-
terior distribution around that point. The alternative
method proposed in this paper is to use a simpler Gaus-
sian approximation (with no off-diagonal terms in the
covariance matrix) but to take this distribution into ac-
count during the learning. With one layer of non-linear

4This assumes that the output of the neural net repre-
sents the mean of a Gaussian distribution from which the
final output is randomly selected. So the final output could
be exactly correct even though the output of the net is not.

hidden units, the integration over the Gaussian distri-
bution can be performed exactly and the exact weight
derivatives can be computed efficiently.

It is not clear how much is lost by ignoring the off-
diagonal terms in the covariance matrix. David Mackay
(personal communication) has shown that if standard
backpropagation is used to find a single, locally optimal
point in weight space and a Gaussian approximation
to the posterior weight distribution is then constructed
around this point, the covariances between different
weights are significant. However, this does not mean
that the covariances are significant when the learning
algorithm is explicitly manipulating the Gaussian dis-
tribution because in this case the learning will try to
force the noise in the weights to be independent. The
pressure for independence comes from the fact that the
cost function will overestimate the information in the
weights if they have correlated noise. We are currently
performing simulations to see if this pressure does in-
deed suppress the covariances.

When using the standard backpropagation algorithm, it
1s essential that the output of a hidden unit is a smooth
function of its input. This 1s why the hidden units use
a smooth sigmoid function instead of a linear thresh-
old function. With noisy weights, however, it 1s possi-
ble to use a version of the backpropagation algorithm
described above in networks that have one layer of lin-
ear threshold units. The noise in the weights ensures
that the probability of a threshold unit being active is
a smooth function of its inputs. As a result, it is easier
to optimize a whole Gaussian distribution over weight
vectors than it is to optimize a single weight vector.

11 Acknowledgements

This research was funded by operating and strategic
grants from NSERC. Geoffrey Hinton is the Noranda
fellow of the Canadian Institute for Advanced Research.
We thank David Mackay, Radford Neal, Chris Williams

and Rich Zemel for helpful discussions.

12 References

Hinton, G. E. (1987) Learning translation invariant
recognition in a massively parallel network. In Goos, G.
and Hartmanis, J., editors, PARLE: Parallel Architec-
tures and Languages Furope, pages 1-13, Lecture Notes
in Computer Science, Springer-Verlag, Berlin.

Lang, K., Waibel, A. and Hinton, G. E. (1990) A Time-
Delay Neural Network Architecture for Isolated Word
Recognition. Neural Networks, 3, 23-43.

Le Cun, Y., Boser, B., Denker, J. S., Henderson,
D., Howard, R. E., Hubbard, W. and Jackel, L. D.
(1989) Back-Propagation Applied to Handwritten Zip-
code Recognition. Neural Computation, 1, 541-551.

Mackay, D. J. C. (1992) A practical Bayesian framework

for backpropagation networks. Neural Computation, 4,

448-472.

Neal, R. M. (1993) Bayesian learning via stochastic dy-
namics. In Giles;, C. L., Hanson, S. J. and Cowan, J.
D. (Eds), Advances in Neural Information Processing
Systems 5, Morgan Kaufmann, San Mateo CA.

Nowlan. S. J. and Hinton, G. E. (1992) Simplifying
neural networks by soft weight sharing. Neural Compu-
tation, 4, 173-193.

Rissanen, J. (1986) Stochastic Complexity and Model-
ing. Annals of Statistics, 14, 1080-1100.

