Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,7 @@ import time
|
|
5 |
import os
|
6 |
from keras.models import load_model
|
7 |
from PIL import Image
|
8 |
-
import
|
9 |
import pymongo
|
10 |
from datetime import datetime
|
11 |
import tempfile
|
@@ -42,63 +42,52 @@ emotion_labels = ['angry', 'fear', 'happy', 'neutral', 'sad', 'surprise']
|
|
42 |
# Load known faces and names
|
43 |
known_faces = []
|
44 |
known_names = []
|
45 |
-
face_recognizer = cv2.face.LBPHFaceRecognizer_create()
|
46 |
|
47 |
def load_known_faces():
|
48 |
folder_path = "known_faces" # Folder containing known face images
|
49 |
for image_name in os.listdir(folder_path):
|
50 |
if image_name.endswith(('.jpg', '.jpeg', '.png')):
|
51 |
image_path = os.path.join(folder_path, image_name)
|
52 |
-
image =
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
for face in faces:
|
59 |
-
x, y, w, h = (face.left(), face.top(), face.width(), face.height())
|
60 |
-
roi_gray = gray[y:y+h, x:x+w]
|
61 |
-
known_faces.append(roi_gray)
|
62 |
known_names.append(image_name.split('.')[0]) # Assuming file name is the person's name
|
63 |
|
64 |
-
# Train the recognizer with the known faces
|
65 |
-
face_recognizer.train(known_faces, np.array([i for i in range(len(known_faces))]))
|
66 |
-
|
67 |
load_known_faces()
|
68 |
|
69 |
-
# Dlib face detector
|
70 |
-
detector = dlib.get_frontal_face_detector()
|
71 |
-
|
72 |
# Process a single frame
|
73 |
def process_frame(frame):
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
77 |
result_text = "" # Initialize result text
|
78 |
|
79 |
-
if
|
80 |
-
for
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
#
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
89 |
face_roi = cv2.cvtColor(face_roi, cv2.COLOR_BGR2RGB)
|
|
|
90 |
face_roi = np.expand_dims(face_roi, axis=0) / 255.0 # Normalize
|
91 |
|
92 |
-
# Emotion detection
|
93 |
predictions = model.predict(face_roi)
|
94 |
emotion = emotion_labels[np.argmax(predictions[0])]
|
95 |
|
96 |
-
# Face recognition
|
97 |
-
name = "Unknown"
|
98 |
-
label, confidence = face_recognizer.predict(roi_gray)
|
99 |
-
if confidence < 100:
|
100 |
-
name = known_names[label]
|
101 |
-
|
102 |
# Format result text
|
103 |
result_text = f"{name} is feeling {emotion}"
|
104 |
|
@@ -115,8 +104,8 @@ def process_frame(frame):
|
|
115 |
print(f"Data inserted into MongoDB: {document}")
|
116 |
|
117 |
# Draw bounding box and label
|
118 |
-
cv2.rectangle(frame, (
|
119 |
-
cv2.putText(frame, result_text, (
|
120 |
|
121 |
return frame, result_text
|
122 |
|
|
|
5 |
import os
|
6 |
from keras.models import load_model
|
7 |
from PIL import Image
|
8 |
+
import face_recognition
|
9 |
import pymongo
|
10 |
from datetime import datetime
|
11 |
import tempfile
|
|
|
42 |
# Load known faces and names
|
43 |
known_faces = []
|
44 |
known_names = []
|
|
|
45 |
|
46 |
def load_known_faces():
|
47 |
folder_path = "known_faces" # Folder containing known face images
|
48 |
for image_name in os.listdir(folder_path):
|
49 |
if image_name.endswith(('.jpg', '.jpeg', '.png')):
|
50 |
image_path = os.path.join(folder_path, image_name)
|
51 |
+
image = face_recognition.load_image_file(image_path)
|
52 |
+
encoding = face_recognition.face_encodings(image)
|
53 |
+
|
54 |
+
if encoding: # Ensure encoding was found
|
55 |
+
known_faces.append(encoding[0]) # Store the first encoding (assumes 1 face per image)
|
|
|
|
|
|
|
|
|
|
|
56 |
known_names.append(image_name.split('.')[0]) # Assuming file name is the person's name
|
57 |
|
|
|
|
|
|
|
58 |
load_known_faces()
|
59 |
|
|
|
|
|
|
|
60 |
# Process a single frame
|
61 |
def process_frame(frame):
|
62 |
+
# Convert the image to RGB for face_recognition
|
63 |
+
rgb_frame = frame[:, :, ::-1]
|
64 |
+
|
65 |
+
# Detect faces
|
66 |
+
face_locations = face_recognition.face_locations(rgb_frame)
|
67 |
+
face_encodings = face_recognition.face_encodings(rgb_frame, face_locations)
|
68 |
+
|
69 |
result_text = "" # Initialize result text
|
70 |
|
71 |
+
if face_encodings:
|
72 |
+
for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings):
|
73 |
+
# Check if the detected face matches any known faces
|
74 |
+
matches = face_recognition.compare_faces(known_faces, face_encoding)
|
75 |
+
name = "Unknown"
|
76 |
+
|
77 |
+
# Find the name of the recognized face
|
78 |
+
if True in matches:
|
79 |
+
first_match_index = matches.index(True)
|
80 |
+
name = known_names[first_match_index]
|
81 |
+
|
82 |
+
# Emotion detection
|
83 |
+
face_roi = frame[top:bottom, left:right]
|
84 |
face_roi = cv2.cvtColor(face_roi, cv2.COLOR_BGR2RGB)
|
85 |
+
face_roi = cv2.resize(face_roi, (48, 48))
|
86 |
face_roi = np.expand_dims(face_roi, axis=0) / 255.0 # Normalize
|
87 |
|
|
|
88 |
predictions = model.predict(face_roi)
|
89 |
emotion = emotion_labels[np.argmax(predictions[0])]
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
# Format result text
|
92 |
result_text = f"{name} is feeling {emotion}"
|
93 |
|
|
|
104 |
print(f"Data inserted into MongoDB: {document}")
|
105 |
|
106 |
# Draw bounding box and label
|
107 |
+
cv2.rectangle(frame, (left, top), (right, bottom), (0, 255, 0), 2)
|
108 |
+
cv2.putText(frame, result_text, (left, top - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
|
109 |
|
110 |
return frame, result_text
|
111 |
|