Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,15 @@
|
|
1 |
import streamlit as st
|
|
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
from datetime import datetime
|
5 |
-
import torch
|
6 |
-
from facenet_pytorch import MTCNN, InceptionResnetV1
|
7 |
from keras.models import load_model
|
8 |
-
from PIL import Image
|
9 |
import sqlite3
|
10 |
import os
|
11 |
-
import tempfile
|
12 |
|
13 |
-
#
|
14 |
DB_NAME = "emotion_detection.db"
|
15 |
|
16 |
-
# Initialize SQLite Database
|
17 |
def initialize_database():
|
18 |
conn = sqlite3.connect(DB_NAME)
|
19 |
cursor = conn.cursor()
|
@@ -30,173 +26,58 @@ def initialize_database():
|
|
30 |
|
31 |
initialize_database()
|
32 |
|
33 |
-
# Load
|
34 |
@st.cache_resource
|
35 |
def load_emotion_model():
|
36 |
-
|
37 |
-
return model
|
38 |
|
39 |
emotion_model = load_emotion_model()
|
40 |
emotion_labels = ['angry', 'fear', 'happy', 'neutral', 'sad', 'surprise']
|
41 |
|
42 |
-
#
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
with torch.no_grad():
|
70 |
-
embedding = facenet(face_tensor).numpy()
|
71 |
-
|
72 |
-
known_faces.append(embedding)
|
73 |
-
known_names.append(image_name.split('.')[0])
|
74 |
-
|
75 |
-
load_known_faces()
|
76 |
-
|
77 |
-
def recognize_face(embedding):
|
78 |
-
min_distance = float('inf')
|
79 |
-
name = "Unknown"
|
80 |
-
for idx, known_embedding in enumerate(known_faces):
|
81 |
-
distance = np.linalg.norm(known_embedding - embedding)
|
82 |
-
if distance < min_distance and distance < 0.6: # Threshold
|
83 |
-
min_distance = distance
|
84 |
-
name = known_names[idx]
|
85 |
-
return name
|
86 |
-
|
87 |
-
def process_frame(frame):
|
88 |
-
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
89 |
-
faces, _ = mtcnn.detect(frame_rgb)
|
90 |
-
result_text = ""
|
91 |
-
|
92 |
-
if faces is not None:
|
93 |
-
for face_box in faces:
|
94 |
-
x1, y1, x2, y2 = map(int, face_box)
|
95 |
-
cropped_face = frame_rgb[y1:y2, x1:x2]
|
96 |
-
resized_face = cv2.resize(cropped_face, (48, 48))
|
97 |
-
face_normalized = resized_face / 255.0
|
98 |
-
face_array = np.expand_dims(face_normalized, axis=0)
|
99 |
-
|
100 |
-
# Emotion prediction
|
101 |
-
predictions = emotion_model.predict(face_array)
|
102 |
-
emotion = emotion_labels[np.argmax(predictions[0])]
|
103 |
-
|
104 |
-
# Face recognition
|
105 |
-
cropped_face_for_recognition = cv2.resize(cropped_face, (160, 160))
|
106 |
-
face_tensor = np.array(cropped_face_for_recognition).transpose(2, 0, 1) / 255.0
|
107 |
-
face_tensor = torch.tensor(face_tensor, dtype=torch.float32).unsqueeze(0)
|
108 |
-
|
109 |
-
with torch.no_grad():
|
110 |
-
face_embedding = facenet(face_tensor).numpy()
|
111 |
-
|
112 |
-
name = recognize_face(face_embedding)
|
113 |
-
|
114 |
-
# Save record in SQLite
|
115 |
-
if name != "Unknown":
|
116 |
-
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
117 |
-
conn = sqlite3.connect(DB_NAME)
|
118 |
-
cursor = conn.cursor()
|
119 |
-
cursor.execute("""
|
120 |
-
INSERT INTO face_data (name, emotion, timestamp)
|
121 |
-
VALUES (?, ?, ?)
|
122 |
-
""", (name, emotion, timestamp))
|
123 |
-
conn.commit()
|
124 |
-
conn.close()
|
125 |
-
|
126 |
-
# Display result
|
127 |
-
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
128 |
-
result_text = f"{name} is feeling {emotion}"
|
129 |
-
cv2.putText(frame, result_text, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
|
130 |
-
else:
|
131 |
-
result_text = "No face detected!"
|
132 |
-
|
133 |
-
return frame, result_text
|
134 |
|
135 |
# Sidebar menu
|
136 |
-
menu = st.sidebar.selectbox("Menu", ["Home", "
|
137 |
|
138 |
if menu == "Home":
|
139 |
-
st.title("Emotion Detection")
|
140 |
-
st.write("
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
else:
|
148 |
-
while True:
|
149 |
-
ret, frame = cap.read()
|
150 |
-
if not ret:
|
151 |
-
break
|
152 |
-
frame, result_text = process_frame(frame)
|
153 |
-
st.image(frame, channels="BGR")
|
154 |
-
st.write(result_text)
|
155 |
-
cap.release()
|
156 |
-
|
157 |
-
elif upload_choice == "Upload Image":
|
158 |
-
uploaded_image = st.file_uploader("Upload Image", type=["png", "jpg", "jpeg"])
|
159 |
-
if uploaded_image:
|
160 |
-
image = Image.open(uploaded_image)
|
161 |
-
frame = np.array(image)
|
162 |
-
frame, result_text = process_frame(frame)
|
163 |
-
st.image(frame)
|
164 |
-
st.write(result_text)
|
165 |
-
|
166 |
-
elif upload_choice == "Upload Video":
|
167 |
-
uploaded_video = st.file_uploader("Upload Video", type=["mp4", "mov", "avi"])
|
168 |
-
if uploaded_video:
|
169 |
-
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
|
170 |
-
temp_file.write(uploaded_video.read())
|
171 |
-
video_source = cv2.VideoCapture(temp_file.name)
|
172 |
-
while video_source.isOpened():
|
173 |
-
ret, frame = video_source.read()
|
174 |
-
if not ret:
|
175 |
-
break
|
176 |
-
frame, result_text = process_frame(frame)
|
177 |
-
st.image(frame, channels="BGR")
|
178 |
-
st.write(result_text)
|
179 |
-
video_source.release()
|
180 |
-
|
181 |
-
elif menu == "Register New Face":
|
182 |
-
st.title("Register New Face")
|
183 |
-
name = st.text_input("Enter Name")
|
184 |
-
if st.button("Capture Image"):
|
185 |
-
cap = cv2.VideoCapture(0)
|
186 |
-
if not cap.isOpened():
|
187 |
-
st.error("Unable to access the camera.")
|
188 |
-
else:
|
189 |
-
ret, frame = cap.read()
|
190 |
-
if ret:
|
191 |
-
image_path = os.path.join(KNOWN_FACES_DIR, f"{name}.jpg")
|
192 |
-
cv2.imwrite(image_path, frame)
|
193 |
-
st.success(f"Face registered successfully for {name}")
|
194 |
-
load_known_faces() # Refresh known faces
|
195 |
-
cap.release()
|
196 |
|
197 |
elif menu == "View Records":
|
198 |
st.title("View Records")
|
199 |
st.subheader("Recent Records")
|
|
|
200 |
conn = sqlite3.connect(DB_NAME)
|
201 |
cursor = conn.cursor()
|
202 |
cursor.execute("SELECT name, emotion, timestamp FROM face_data ORDER BY timestamp DESC LIMIT 5")
|
|
|
1 |
import streamlit as st
|
2 |
+
from streamlit_webrtc import webrtc_streamer, VideoTransformerBase, VideoFrame
|
3 |
import cv2
|
4 |
import numpy as np
|
5 |
from datetime import datetime
|
|
|
|
|
6 |
from keras.models import load_model
|
|
|
7 |
import sqlite3
|
8 |
import os
|
|
|
9 |
|
10 |
+
# Database Initialization
|
11 |
DB_NAME = "emotion_detection.db"
|
12 |
|
|
|
13 |
def initialize_database():
|
14 |
conn = sqlite3.connect(DB_NAME)
|
15 |
cursor = conn.cursor()
|
|
|
26 |
|
27 |
initialize_database()
|
28 |
|
29 |
+
# Load emotion detection model
|
30 |
@st.cache_resource
|
31 |
def load_emotion_model():
|
32 |
+
return load_model('CNN_Model_acc_75.h5')
|
|
|
33 |
|
34 |
emotion_model = load_emotion_model()
|
35 |
emotion_labels = ['angry', 'fear', 'happy', 'neutral', 'sad', 'surprise']
|
36 |
|
37 |
+
# Video Transformer for Streamlit WebRTC
|
38 |
+
class EmotionDetector(VideoTransformerBase):
|
39 |
+
def __init__(self):
|
40 |
+
self.model = emotion_model
|
41 |
+
|
42 |
+
def transform(self, frame: VideoFrame) -> VideoFrame:
|
43 |
+
img = frame.to_ndarray(format="bgr24")
|
44 |
+
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
45 |
+
faces = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml").detectMultiScale(
|
46 |
+
gray, scaleFactor=1.1, minNeighbors=5, minSize=(48, 48)
|
47 |
+
)
|
48 |
+
|
49 |
+
for (x, y, w, h) in faces:
|
50 |
+
face = gray[y:y + h, x:x + w]
|
51 |
+
face_resized = cv2.resize(face, (48, 48))
|
52 |
+
face_normalized = face_resized / 255.0
|
53 |
+
face_reshaped = np.reshape(face_normalized, (1, 48, 48, 1))
|
54 |
+
|
55 |
+
prediction = self.model.predict(face_reshaped)
|
56 |
+
emotion = emotion_labels[np.argmax(prediction[0])]
|
57 |
+
|
58 |
+
# Draw bounding box and label
|
59 |
+
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)
|
60 |
+
cv2.putText(img, emotion, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
|
61 |
+
|
62 |
+
return VideoFrame.from_ndarray(img, format="bgr24")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
# Sidebar menu
|
65 |
+
menu = st.sidebar.selectbox("Menu", ["Home", "View Records"])
|
66 |
|
67 |
if menu == "Home":
|
68 |
+
st.title("Real-Time Emotion Detection")
|
69 |
+
st.write("Using your camera for real-time emotion detection.")
|
70 |
+
|
71 |
+
webrtc_streamer(
|
72 |
+
key="emotion-detection",
|
73 |
+
video_transformer_factory=EmotionDetector,
|
74 |
+
media_stream_constraints={"video": True, "audio": False},
|
75 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
elif menu == "View Records":
|
78 |
st.title("View Records")
|
79 |
st.subheader("Recent Records")
|
80 |
+
|
81 |
conn = sqlite3.connect(DB_NAME)
|
82 |
cursor = conn.cursor()
|
83 |
cursor.execute("SELECT name, emotion, timestamp FROM face_data ORDER BY timestamp DESC LIMIT 5")
|