Update app.py
Browse files
app.py
CHANGED
@@ -3,109 +3,23 @@ import cv2
|
|
3 |
import numpy as np
|
4 |
import streamlit as st
|
5 |
from datetime import datetime
|
6 |
-
from tensorflow.keras.models import load_model
|
7 |
|
8 |
# Directories
|
9 |
-
KNOWN_FACES_DIR = "known_faces"
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
labels = []
|
28 |
-
label_map = {}
|
29 |
-
for idx, person_name in enumerate(os.listdir(KNOWN_FACES_DIR)):
|
30 |
-
person_path = os.path.join(KNOWN_FACES_DIR, person_name)
|
31 |
-
if not os.path.isdir(person_path):
|
32 |
-
continue
|
33 |
-
label_map[idx] = person_name
|
34 |
-
for filename in os.listdir(person_path):
|
35 |
-
filepath = os.path.join(person_path, filename)
|
36 |
-
if filepath.lower().endswith(('.jpg', '.jpeg', '.png')):
|
37 |
-
img = cv2.imread(filepath, cv2.IMREAD_GRAYSCALE)
|
38 |
-
if img is not None:
|
39 |
-
faces.append(img)
|
40 |
-
labels.append(idx)
|
41 |
-
if len(faces) == 0:
|
42 |
-
st.warning("No valid training data found. Add faces first.")
|
43 |
-
return {}
|
44 |
-
face_recognizer.train(faces, np.array(labels))
|
45 |
-
return {v: k for k, v in label_map.items()}
|
46 |
-
|
47 |
-
def detect_faces(image):
|
48 |
-
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
49 |
-
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5)
|
50 |
-
return gray, faces
|
51 |
-
|
52 |
-
def detect_emotions(face_img):
|
53 |
-
resized_face = cv2.resize(face_img, (48, 48))
|
54 |
-
normalized_face = resized_face / 255.0
|
55 |
-
reshaped_face = np.expand_dims(normalized_face, axis=(0, -1))
|
56 |
-
emotion_probabilities = emotion_model.predict(reshaped_face)
|
57 |
-
emotion_idx = np.argmax(emotion_probabilities)
|
58 |
-
return load_emotion_labels()[emotion_idx]
|
59 |
-
|
60 |
-
# Streamlit App
|
61 |
-
st.title("Face Recognition and Emotion Detection")
|
62 |
-
st.sidebar.title("Options")
|
63 |
-
option = st.sidebar.selectbox("Choose an action", ["Home", "Register New Face", "Recognize Faces"])
|
64 |
-
|
65 |
-
# Train the recognizer initially
|
66 |
-
if option != "Register New Face":
|
67 |
-
label_map = train_recognizer()
|
68 |
-
|
69 |
-
if option == "Home":
|
70 |
-
st.write("Use the sidebar to register new faces or recognize them.")
|
71 |
-
|
72 |
-
elif option == "Register New Face":
|
73 |
-
person_name = st.text_input("Enter the person's name")
|
74 |
-
capture_mode = st.radio("Select input method", ["Use Camera", "Upload Image(s)"])
|
75 |
-
|
76 |
-
if person_name and st.button("Register Face"):
|
77 |
-
person_dir = os.path.join(KNOWN_FACES_DIR, person_name)
|
78 |
-
os.makedirs(person_dir, exist_ok=True)
|
79 |
-
|
80 |
-
if capture_mode == "Use Camera":
|
81 |
-
st.warning("Switch to a device with a camera for this option.")
|
82 |
-
|
83 |
-
elif capture_mode == "Upload Image(s)":
|
84 |
-
uploaded_files = st.file_uploader("Upload images", type=["jpg", "jpeg", "png"], accept_multiple_files=True)
|
85 |
-
if uploaded_files:
|
86 |
-
for uploaded_file in uploaded_files:
|
87 |
-
img = cv2.imdecode(np.frombuffer(uploaded_file.read(), np.uint8), cv2.IMREAD_COLOR)
|
88 |
-
gray, faces = detect_faces(img)
|
89 |
-
for (x, y, w, h) in faces:
|
90 |
-
face_img = gray[y:y+h, x:x+w]
|
91 |
-
resized_img = cv2.resize(face_img, IMG_SIZE)
|
92 |
-
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
|
93 |
-
filepath = os.path.join(person_dir, f"{timestamp}.jpg")
|
94 |
-
cv2.imwrite(filepath, resized_img)
|
95 |
-
st.success(f"Faces registered successfully for {person_name}!")
|
96 |
-
label_map = train_recognizer()
|
97 |
-
|
98 |
-
elif option == "Recognize Faces":
|
99 |
-
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
100 |
-
if uploaded_file:
|
101 |
-
img = cv2.imdecode(np.frombuffer(uploaded_file.read(), np.uint8), cv2.IMREAD_COLOR)
|
102 |
-
gray, faces = detect_faces(img)
|
103 |
-
for (x, y, w, h) in faces:
|
104 |
-
face_img = gray[y:y+h, x:x+w]
|
105 |
-
resized_img = cv2.resize(face_img, IMG_SIZE)
|
106 |
-
label, confidence = face_recognizer.predict(resized_img)
|
107 |
-
name = label_map.get(label, "Unknown")
|
108 |
-
emotion = detect_emotions(face_img)
|
109 |
-
cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)
|
110 |
-
cv2.putText(img, f"{name}, {emotion}", (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
|
111 |
-
st.image(img, channels="BGR")
|
|
|
3 |
import numpy as np
|
4 |
import streamlit as st
|
5 |
from datetime import datetime
|
|
|
6 |
|
7 |
# Directories
|
8 |
+
KNOWN_FACES_DIR = "./known_faces" # Ensure this path is writable on your local machine
|
9 |
+
|
10 |
+
# Ensure the known faces directory exists
|
11 |
+
os.makedirs(KNOWN_FACES_DIR, exist_ok=True)
|
12 |
+
|
13 |
+
if capture_mode == "Upload Image(s)":
|
14 |
+
uploaded_files = st.file_uploader("Upload images", type=["jpg", "jpeg", "png"], accept_multiple_files=True)
|
15 |
+
if uploaded_files:
|
16 |
+
for uploaded_file in uploaded_files:
|
17 |
+
img = cv2.imdecode(np.frombuffer(uploaded_file.read(), np.uint8), cv2.IMREAD_COLOR)
|
18 |
+
gray, faces = detect_faces(img)
|
19 |
+
for (x, y, w, h) in faces:
|
20 |
+
face_img = gray[y:y+h, x:x+w]
|
21 |
+
resized_img = cv2.resize(face_img, IMG_SIZE)
|
22 |
+
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
|
23 |
+
filepath = os.path.join(KNOWN_FACES_DIR, f"{timestamp}.jpg")
|
24 |
+
cv2.imwrite(filepath, resized_img)
|
25 |
+
st.success(f"Faces registered successfully for {person_name}!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|