Update app.py
Browse files
app.py
CHANGED
@@ -5,13 +5,10 @@ import time
|
|
5 |
import os
|
6 |
from keras.models import load_model
|
7 |
from PIL import Image
|
8 |
-
from mtcnn import MTCNN # MTCNN for better face detection
|
9 |
-
from keras.preprocessing import image
|
10 |
-
from tensorflow.keras.applications.inception_v3 import preprocess_input
|
11 |
import pymongo
|
12 |
from datetime import datetime
|
13 |
import tempfile
|
14 |
-
from facenet_pytorch import MTCNN
|
15 |
|
16 |
# MongoDB Atlas Connection String
|
17 |
MONGO_URI = "mongodb+srv://test:[email protected]/?retryWrites=true&w=majority"
|
@@ -42,57 +39,67 @@ print("Time taken to load model: ", time.time() - start)
|
|
42 |
# Emotion labels
|
43 |
emotion_labels = ['angry', 'fear', 'happy', 'neutral', 'sad', 'surprise']
|
44 |
|
45 |
-
#
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
#
|
55 |
-
|
|
|
|
|
56 |
|
57 |
# Process a single frame
|
58 |
def process_frame(frame):
|
59 |
-
|
60 |
-
faces =
|
61 |
|
62 |
result_text = "" # Initialize result text
|
63 |
|
64 |
-
if len(faces) > 0:
|
65 |
for face in faces:
|
66 |
-
x, y, w, h = face[
|
67 |
roi_color = frame[y:y+h, x:x+w]
|
|
|
68 |
|
69 |
# Apply histogram equalization for better feature extraction
|
70 |
-
roi_gray = cv2.cvtColor(roi_color, cv2.COLOR_BGR2GRAY)
|
71 |
roi_gray = cv2.equalizeHist(roi_gray)
|
72 |
|
73 |
-
# Emotion detection
|
74 |
face_roi = cv2.resize(roi_color, (48, 48))
|
75 |
face_roi = cv2.cvtColor(face_roi, cv2.COLOR_BGR2RGB)
|
76 |
face_roi = np.expand_dims(face_roi, axis=0) / 255.0 # Normalize
|
77 |
|
|
|
78 |
predictions = model.predict(face_roi)
|
79 |
emotion = emotion_labels[np.argmax(predictions[0])]
|
80 |
|
81 |
-
#
|
82 |
-
face_embedding = facenet_model.predict(preprocess_input(np.expand_dims(face['keypoints'], axis=0)))
|
83 |
-
|
84 |
-
# Compare face embeddings with known faces (replace with your own database)
|
85 |
-
known_faces = [] # Load known face embeddings from database
|
86 |
-
known_names = [] # Corresponding names
|
87 |
-
|
88 |
name = "Unknown"
|
89 |
-
|
|
|
|
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
if distance < min_distance:
|
94 |
-
min_distance = distance
|
95 |
-
name = known_names[i]
|
96 |
|
97 |
# Save data to MongoDB if face is recognized (name != Unknown)
|
98 |
if name != "Unknown":
|
@@ -106,8 +113,6 @@ def process_frame(frame):
|
|
106 |
collection.insert_one(document)
|
107 |
print(f"Data inserted into MongoDB: {document}")
|
108 |
|
109 |
-
result_text = f"{name} is feeling {emotion}"
|
110 |
-
|
111 |
# Draw bounding box and label
|
112 |
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
|
113 |
cv2.putText(frame, result_text, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
|
|
|
5 |
import os
|
6 |
from keras.models import load_model
|
7 |
from PIL import Image
|
|
|
|
|
|
|
8 |
import pymongo
|
9 |
from datetime import datetime
|
10 |
import tempfile
|
11 |
+
from facenet_pytorch import MTCNN
|
12 |
|
13 |
# MongoDB Atlas Connection String
|
14 |
MONGO_URI = "mongodb+srv://test:[email protected]/?retryWrites=true&w=majority"
|
|
|
39 |
# Emotion labels
|
40 |
emotion_labels = ['angry', 'fear', 'happy', 'neutral', 'sad', 'surprise']
|
41 |
|
42 |
+
# Initialize MTCNN for face detection
|
43 |
+
mtcnn = MTCNN()
|
44 |
+
|
45 |
+
# Load known faces and names
|
46 |
+
known_faces = []
|
47 |
+
known_names = []
|
48 |
+
face_recognizer = cv2.face.LBPHFaceRecognizer_create()
|
49 |
+
|
50 |
+
def load_known_faces():
|
51 |
+
folder_path = "known_faces" # Folder containing known face images
|
52 |
+
for image_name in os.listdir(folder_path):
|
53 |
+
if image_name.endswith(('.jpg', '.jpeg', '.png')):
|
54 |
+
image_path = os.path.join(folder_path, image_name)
|
55 |
+
image = cv2.imread(image_path)
|
56 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
57 |
+
# Detect face in the image
|
58 |
+
faces = mtcnn.detect(image)[0] # Use the correct detect method
|
59 |
|
60 |
+
for face in faces:
|
61 |
+
x, y, w, h = face[0], face[1], face[2], face[3]
|
62 |
+
roi_gray = gray[y:y+h, x:x+w]
|
63 |
+
known_faces.append(roi_gray)
|
64 |
+
known_names.append(image_name.split('.')[0]) # Assuming file name is the person's name
|
65 |
|
66 |
+
# Train the recognizer with the known faces
|
67 |
+
face_recognizer.train(known_faces, np.array([i for i in range(len(known_faces))]))
|
68 |
+
|
69 |
+
load_known_faces()
|
70 |
|
71 |
# Process a single frame
|
72 |
def process_frame(frame):
|
73 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
74 |
+
faces = mtcnn.detect(frame)[0] # Use the correct detect method
|
75 |
|
76 |
result_text = "" # Initialize result text
|
77 |
|
78 |
+
if faces is not None and len(faces) > 0:
|
79 |
for face in faces:
|
80 |
+
x, y, w, h = face[0], face[1], face[2], face[3]
|
81 |
roi_color = frame[y:y+h, x:x+w]
|
82 |
+
roi_gray = gray[y:y+h, x:x+w]
|
83 |
|
84 |
# Apply histogram equalization for better feature extraction
|
|
|
85 |
roi_gray = cv2.equalizeHist(roi_gray)
|
86 |
|
|
|
87 |
face_roi = cv2.resize(roi_color, (48, 48))
|
88 |
face_roi = cv2.cvtColor(face_roi, cv2.COLOR_BGR2RGB)
|
89 |
face_roi = np.expand_dims(face_roi, axis=0) / 255.0 # Normalize
|
90 |
|
91 |
+
# Emotion detection
|
92 |
predictions = model.predict(face_roi)
|
93 |
emotion = emotion_labels[np.argmax(predictions[0])]
|
94 |
|
95 |
+
# Face recognition
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
name = "Unknown"
|
97 |
+
label, confidence = face_recognizer.predict(roi_gray)
|
98 |
+
if confidence < 100:
|
99 |
+
name = known_names[label]
|
100 |
|
101 |
+
# Format result text
|
102 |
+
result_text = f"{name} is feeling {emotion}"
|
|
|
|
|
|
|
103 |
|
104 |
# Save data to MongoDB if face is recognized (name != Unknown)
|
105 |
if name != "Unknown":
|
|
|
113 |
collection.insert_one(document)
|
114 |
print(f"Data inserted into MongoDB: {document}")
|
115 |
|
|
|
|
|
116 |
# Draw bounding box and label
|
117 |
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
|
118 |
cv2.putText(frame, result_text, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
|