Update app.py
Browse files
app.py
CHANGED
@@ -2,31 +2,20 @@ import sqlite3
|
|
2 |
import streamlit as st
|
3 |
import cv2
|
4 |
import numpy as np
|
5 |
-
import time
|
6 |
import os
|
7 |
from keras.models import load_model
|
|
|
8 |
from PIL import Image
|
9 |
-
import tempfile
|
10 |
-
|
11 |
-
# Larger title
|
12 |
-
st.markdown("<h1 style='text-align: center;'>Emotion Detection with Face Recognition</h1>", unsafe_allow_html=True)
|
13 |
-
|
14 |
-
# Smaller subtitle
|
15 |
-
st.markdown("<h3 style='text-align: center;'>angry, fear, happy, neutral, sad, surprise</h3>", unsafe_allow_html=True)
|
16 |
|
17 |
# Database setup
|
18 |
DATABASE_NAME = "emotion_recognition.db"
|
|
|
|
|
|
|
19 |
|
20 |
def init_db():
|
21 |
conn = sqlite3.connect(DATABASE_NAME)
|
22 |
cursor = conn.cursor()
|
23 |
-
cursor.execute('''
|
24 |
-
CREATE TABLE IF NOT EXISTS registered_faces (
|
25 |
-
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
26 |
-
name TEXT NOT NULL,
|
27 |
-
image BLOB NOT NULL
|
28 |
-
)
|
29 |
-
''')
|
30 |
cursor.execute('''
|
31 |
CREATE TABLE IF NOT EXISTS attendance_log (
|
32 |
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
@@ -40,21 +29,6 @@ def init_db():
|
|
40 |
|
41 |
init_db()
|
42 |
|
43 |
-
def register_face(name, image):
|
44 |
-
conn = sqlite3.connect(DATABASE_NAME)
|
45 |
-
cursor = conn.cursor()
|
46 |
-
cursor.execute("INSERT INTO registered_faces (name, image) VALUES (?, ?)", (name, image))
|
47 |
-
conn.commit()
|
48 |
-
conn.close()
|
49 |
-
|
50 |
-
def fetch_registered_faces():
|
51 |
-
conn = sqlite3.connect(DATABASE_NAME)
|
52 |
-
cursor = conn.cursor()
|
53 |
-
cursor.execute("SELECT id, name FROM registered_faces")
|
54 |
-
rows = cursor.fetchall()
|
55 |
-
conn.close()
|
56 |
-
return rows
|
57 |
-
|
58 |
def log_attendance(name, emotion):
|
59 |
conn = sqlite3.connect(DATABASE_NAME)
|
60 |
cursor = conn.cursor()
|
@@ -70,41 +44,77 @@ def fetch_recent_activity():
|
|
70 |
conn.close()
|
71 |
return rows
|
72 |
|
73 |
-
# Load
|
74 |
@st.cache_resource
|
75 |
def load_emotion_model():
|
76 |
model = load_model('CNN_Model_acc_75.h5')
|
77 |
return model
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
# Emotion labels
|
82 |
emotion_labels = ['angry', 'fear', 'happy', 'neutral', 'sad', 'surprise']
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
# Sidebar options
|
85 |
-
sidebar_choice = st.sidebar.selectbox("Choose an option", ["Emotion Detection", "Register New Face", "View
|
86 |
|
|
|
87 |
if sidebar_choice == "Register New Face":
|
88 |
st.header("Register New Face")
|
89 |
name = st.text_input("Enter Name")
|
90 |
-
|
91 |
-
if
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
logs = fetch_recent_activity()
|
109 |
if logs:
|
110 |
for name, emotion, timestamp in logs:
|
@@ -113,58 +123,52 @@ elif sidebar_choice == "Recent Activity":
|
|
113 |
st.write("No recent activity found.")
|
114 |
|
115 |
else: # Emotion Detection
|
116 |
-
st.
|
117 |
-
|
118 |
-
|
119 |
|
120 |
def process_frame(frame):
|
121 |
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
122 |
-
faces =
|
123 |
-
|
124 |
result_text = ""
|
125 |
for (x, y, w, h) in faces:
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
|
|
136 |
log_attendance(label, emotion)
|
137 |
|
|
|
138 |
result_text = f"{label} is feeling {emotion}"
|
139 |
-
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
|
140 |
-
cv2.putText(frame, result_text, (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
141 |
return frame, result_text
|
142 |
|
143 |
-
if
|
144 |
-
uploaded_image = st.file_uploader("Upload Image", type=["
|
145 |
if uploaded_image:
|
146 |
image = np.array(Image.open(uploaded_image))
|
147 |
frame, result_text = process_frame(image)
|
148 |
-
st.image(frame, caption=
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
while True:
|
158 |
-
ret, frame = video_source.read()
|
159 |
-
if not ret:
|
160 |
-
break
|
161 |
-
frame, result_text = process_frame(frame)
|
162 |
-
st.image(frame, channels="BGR", use_column_width=True)
|
163 |
-
|
164 |
-
elif upload_choice == "Camera":
|
165 |
-
image = st.camera_input("Take a picture")
|
166 |
-
if image:
|
167 |
-
frame = np.array(Image.open(image))
|
168 |
frame, result_text = process_frame(frame)
|
169 |
-
|
170 |
-
|
|
|
|
|
|
|
|
2 |
import streamlit as st
|
3 |
import cv2
|
4 |
import numpy as np
|
|
|
5 |
import os
|
6 |
from keras.models import load_model
|
7 |
+
from datetime import datetime
|
8 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# Database setup
|
11 |
DATABASE_NAME = "emotion_recognition.db"
|
12 |
+
KNOWN_FACES_DIR = "known_faces"
|
13 |
+
if not os.path.exists(KNOWN_FACES_DIR):
|
14 |
+
os.makedirs(KNOWN_FACES_DIR)
|
15 |
|
16 |
def init_db():
|
17 |
conn = sqlite3.connect(DATABASE_NAME)
|
18 |
cursor = conn.cursor()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
cursor.execute('''
|
20 |
CREATE TABLE IF NOT EXISTS attendance_log (
|
21 |
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
|
|
29 |
|
30 |
init_db()
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
def log_attendance(name, emotion):
|
33 |
conn = sqlite3.connect(DATABASE_NAME)
|
34 |
cursor = conn.cursor()
|
|
|
44 |
conn.close()
|
45 |
return rows
|
46 |
|
47 |
+
# Load pre-trained emotion detection model
|
48 |
@st.cache_resource
|
49 |
def load_emotion_model():
|
50 |
model = load_model('CNN_Model_acc_75.h5')
|
51 |
return model
|
52 |
|
53 |
+
emotion_model = load_emotion_model()
|
|
|
|
|
54 |
emotion_labels = ['angry', 'fear', 'happy', 'neutral', 'sad', 'surprise']
|
55 |
|
56 |
+
# Initialize LBPH face recognizer
|
57 |
+
face_recognizer = cv2.face.LBPHFaceRecognizer_create()
|
58 |
+
|
59 |
+
def train_recognizer():
|
60 |
+
faces = []
|
61 |
+
labels = []
|
62 |
+
for name in os.listdir(KNOWN_FACES_DIR):
|
63 |
+
for filename in os.listdir(os.path.join(KNOWN_FACES_DIR, name)):
|
64 |
+
filepath = os.path.join(KNOWN_FACES_DIR, name, filename)
|
65 |
+
image = cv2.imread(filepath, cv2.IMREAD_GRAYSCALE)
|
66 |
+
faces.append(image)
|
67 |
+
labels.append(name)
|
68 |
+
label_ids = {name: idx for idx, name in enumerate(set(labels))}
|
69 |
+
label_ids_rev = {idx: name for name, idx in label_ids.items()}
|
70 |
+
labels = [label_ids[label] for label in labels]
|
71 |
+
face_recognizer.train(faces, np.array(labels))
|
72 |
+
return label_ids_rev
|
73 |
+
|
74 |
+
label_ids_rev = train_recognizer()
|
75 |
+
|
76 |
# Sidebar options
|
77 |
+
sidebar_choice = st.sidebar.selectbox("Choose an option", ["Emotion Detection", "Register New Face", "View Recent Activity"])
|
78 |
|
79 |
+
# Main App Logic
|
80 |
if sidebar_choice == "Register New Face":
|
81 |
st.header("Register New Face")
|
82 |
name = st.text_input("Enter Name")
|
83 |
+
capture_button = st.button("Capture Face via Camera")
|
84 |
+
if capture_button and name:
|
85 |
+
cap = cv2.VideoCapture(0)
|
86 |
+
st.write("Capturing face... Look into the camera.")
|
87 |
+
captured_faces = []
|
88 |
+
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
89 |
+
|
90 |
+
while len(captured_faces) < 5:
|
91 |
+
ret, frame = cap.read()
|
92 |
+
if not ret:
|
93 |
+
st.error("Error capturing video")
|
94 |
+
break
|
95 |
+
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
96 |
+
faces = face_cascade.detectMultiScale(gray_frame, scaleFactor=1.1, minNeighbors=5, minSize=(100, 100))
|
97 |
+
for (x, y, w, h) in faces:
|
98 |
+
face_roi = gray_frame[y:y + h, x:x + w]
|
99 |
+
captured_faces.append(face_roi)
|
100 |
+
cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2)
|
101 |
+
cv2.imshow("Face Registration", frame)
|
102 |
+
if cv2.waitKey(1) & 0xFF == ord('q'):
|
103 |
+
break
|
104 |
+
cap.release()
|
105 |
+
cv2.destroyAllWindows()
|
106 |
+
|
107 |
+
# Save faces
|
108 |
+
person_dir = os.path.join(KNOWN_FACES_DIR, name)
|
109 |
+
if not os.path.exists(person_dir):
|
110 |
+
os.makedirs(person_dir)
|
111 |
+
for i, face in enumerate(captured_faces):
|
112 |
+
cv2.imwrite(os.path.join(person_dir, f"{name}_{i}.jpg"), face)
|
113 |
+
label_ids_rev = train_recognizer()
|
114 |
+
st.success(f"{name} has been registered successfully!")
|
115 |
+
|
116 |
+
elif sidebar_choice == "View Recent Activity":
|
117 |
+
st.header("Recent Activity")
|
118 |
logs = fetch_recent_activity()
|
119 |
if logs:
|
120 |
for name, emotion, timestamp in logs:
|
|
|
123 |
st.write("No recent activity found.")
|
124 |
|
125 |
else: # Emotion Detection
|
126 |
+
st.header("Emotion Detection with Face Recognition")
|
127 |
+
mode = st.radio("Choose mode", ["Image", "Camera"])
|
128 |
+
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
129 |
|
130 |
def process_frame(frame):
|
131 |
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
132 |
+
faces = face_cascade.detectMultiScale(gray_frame, scaleFactor=1.1, minNeighbors=5, minSize=(100, 100))
|
|
|
133 |
result_text = ""
|
134 |
for (x, y, w, h) in faces:
|
135 |
+
face_roi = gray_frame[y:y + h, x:x + w]
|
136 |
+
face_resized = cv2.resize(face_roi, (150, 150))
|
137 |
+
label_id, confidence = face_recognizer.predict(face_resized)
|
138 |
+
label = label_ids_rev.get(label_id, "Unknown")
|
139 |
+
|
140 |
+
# Emotion Detection
|
141 |
+
face_color = cv2.resize(frame[y:y + h, x:x + w], (48, 48)) / 255.0
|
142 |
+
face_color = np.expand_dims(cv2.cvtColor(face_color, cv2.COLOR_BGR2RGB), axis=0)
|
143 |
+
emotion_prediction = emotion_model.predict(face_color)
|
144 |
+
emotion = emotion_labels[np.argmax(emotion_prediction[0])]
|
145 |
+
|
146 |
+
# Log Attendance
|
147 |
log_attendance(label, emotion)
|
148 |
|
149 |
+
# Annotate frame
|
150 |
result_text = f"{label} is feeling {emotion}"
|
151 |
+
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
|
152 |
+
cv2.putText(frame, result_text, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
153 |
return frame, result_text
|
154 |
|
155 |
+
if mode == "Image":
|
156 |
+
uploaded_image = st.file_uploader("Upload an Image", type=["jpg", "jpeg", "png"])
|
157 |
if uploaded_image:
|
158 |
image = np.array(Image.open(uploaded_image))
|
159 |
frame, result_text = process_frame(image)
|
160 |
+
st.image(frame, caption=result_text)
|
161 |
+
|
162 |
+
elif mode == "Camera":
|
163 |
+
cap = cv2.VideoCapture(0)
|
164 |
+
st.write("Press 'q' to exit.")
|
165 |
+
while True:
|
166 |
+
ret, frame = cap.read()
|
167 |
+
if not ret:
|
168 |
+
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
frame, result_text = process_frame(frame)
|
170 |
+
cv2.imshow("Emotion Detection", frame)
|
171 |
+
if cv2.waitKey(1) & 0xFF == ord('q'):
|
172 |
+
break
|
173 |
+
cap.release()
|
174 |
+
cv2.destroyAllWindows()
|