File size: 6,457 Bytes
2d75c41
76ea4a3
c5f6154
56a50b1
 
76ea4a3
c5f6154
 
 
 
56a50b1
4b17a12
 
 
 
 
56a50b1
 
c5f6154
4b17a12
76ea4a3
c5f6154
76ea4a3
 
4b17a12
 
 
 
1945a19
c5f6154
 
 
 
1945a19
c5f6154
76ea4a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5f6154
76ea4a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5f6154
4b17a12
 
76ea4a3
 
 
 
 
 
 
1945a19
 
c5f6154
76ea4a3
 
 
 
 
 
 
c5f6154
 
 
 
76ea4a3
c5f6154
 
 
76ea4a3
c5f6154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76ea4a3
4b17a12
76ea4a3
 
 
c5f6154
76ea4a3
c5f6154
 
 
 
 
76ea4a3
c5f6154
76ea4a3
 
 
 
 
56a50b1
76ea4a3
4b17a12
d4a996d
76ea4a3
d4a996d
76ea4a3
c5f6154
4b17a12
 
c5f6154
 
76ea4a3
c5f6154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76ea4a3
 
 
c5f6154
76ea4a3
 
 
 
 
 
c5f6154
76ea4a3
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import os
import sqlite3
import cv2
import streamlit as st
from datetime import datetime
from PIL import Image
import numpy as np
from keras.models import load_model
from huggingface_hub import HfApi
import time

# Constants
KNOWN_FACES_DIR = "known_faces"  # Directory to save user images
DATABASE = "students.db"  # SQLite database file to store student information

# Ensure the directory exists
os.makedirs(KNOWN_FACES_DIR, exist_ok=True)

# Initialize Hugging Face API
hf_token = os.getenv("upload")  # The key must match the secret name set in Hugging Face
if not hf_token:
    raise ValueError("Hugging Face token not found. Ensure it's set as a secret in Hugging Face")
api = HfApi()

# Repository Details on Hugging Face
REPO_NAME = "face_and_emotion_detection"  # Replace with your Hugging Face repository name
REPO_ID = "LovnishVerma/" + REPO_NAME  # Replace "LovnishVerma" with your Hugging Face username
REPO_TYPE = "space"  # 'space' type for Streamlit-based projects

# Load emotion detection model
model = load_model('CNN_Model_acc_75.h5')
emotion_labels = ['angry', 'fear', 'happy', 'neutral', 'sad', 'surprise']
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')

# Initialize the SQLite database
def initialize_database():
    conn = sqlite3.connect(DATABASE)
    cursor = conn.cursor()
    cursor.execute("""
        CREATE TABLE IF NOT EXISTS students (
            id INTEGER PRIMARY KEY AUTOINCREMENT,
            name TEXT NOT NULL,
            roll_no TEXT NOT NULL UNIQUE,
            image_path TEXT NOT NULL,
            timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
        )
    """)
    conn.commit()
    conn.close()

# Save student information in the SQLite database
def save_to_database(name, roll_no, image_path):
    conn = sqlite3.connect(DATABASE)
    cursor = conn.cursor()
    try:
        cursor.execute("""
            INSERT INTO students (name, roll_no, image_path)
            VALUES (?, ?, ?)
        """, (name, roll_no, image_path))
        conn.commit()
        st.success("Data saved successfully!")
    except sqlite3.IntegrityError:
        st.error("Roll number already exists!")
    finally:
        conn.close()

# Save the captured image to Hugging Face and return the local path
def save_image_to_hugging_face(image, name, roll_no):
    filename = f"{name}_{roll_no}.jpg"
    local_path = os.path.join(KNOWN_FACES_DIR, filename)
    image.save(local_path)

    try:
        api.upload_file(
            path_or_fileobj=local_path,
            path_in_repo=filename,
            repo_id=REPO_ID,
            repo_type=REPO_TYPE,
            token=hf_token
        )
        st.success(f"Image uploaded to Hugging Face: {filename}")
    except Exception as e:
        st.error(f"Error uploading image to Hugging Face: {e}")

    return local_path

# Process each frame for emotion detection
def process_frame(frame):
    gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    faces = face_cascade.detectMultiScale(gray_frame, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))

    for (x, y, w, h) in faces:
        roi_gray = gray_frame[y:y+h, x:x+w]
        roi_color = frame[y:y+h, x:x+w]

        face_roi = cv2.resize(roi_color, (48, 48))
        face_roi = np.expand_dims(face_roi, axis=0)
        face_roi = face_roi / float(48)
        predictions = model.predict(face_roi)
        emotion = emotion_labels[np.argmax(predictions[0])]

        # Display emotion text on face
        cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
        cv2.putText(frame, emotion, (x, y+h), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)

    return frame

# Attendance recording
def record_attendance(name, roll_no, emotion):
    conn = sqlite3.connect(DATABASE)
    cursor = conn.cursor()
    cursor.execute("""
        INSERT INTO students (name, roll_no, image_path, timestamp)
        VALUES (?, ?, ?, ?)
    """, (name, roll_no, f"known_faces/{name}_{roll_no}.jpg", datetime.now()))
    conn.commit()
    conn.close()

# User Interface
st.title("Student Registration and Attendance")

# Choose input method for the image (webcam or file upload)
capture_mode = st.radio("Choose an option to upload your image", ["Use Webcam", "Upload File"])

if capture_mode == "Use Webcam":
    picture = st.camera_input("Take a picture")  # Capture image using webcam
elif capture_mode == "Upload File":
    picture = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])

# Input fields for student details
name = st.text_input("Enter your name")
roll_no = st.text_input("Enter your roll number")

# Handle image upload or webcam capture
if st.button("Register"):
    if not name or not roll_no:
        st.error("Please fill in both name and roll number.")
    elif not picture:
        st.error("Please upload or capture an image.")
    else:
        try:
            # Open the image based on capture mode
            if capture_mode == "Use Webcam" and picture:
                image = Image.open(picture)
            elif capture_mode == "Upload File" and picture:
                image = Image.open(picture)

            # Save the image locally and upload it to Hugging Face
            image_path = save_image_to_hugging_face(image, name, roll_no)

            # Save user data to the database
            save_to_database(name, roll_no, image_path)

            # Detect faces and emotions
            cap = cv2.VideoCapture(0)
            while True:
                ret, frame = cap.read()
                if not ret:
                    break

                frame = process_frame(frame)
                st.image(frame, channels="BGR", use_column_width=True)
                record_attendance(name, roll_no, emotion)
                break  # Stop after capturing one frame

            cap.release()

        except Exception as e:
            st.error(f"An error occurred: {e}")

# Display registered students
if st.checkbox("Show registered students"):
    conn = sqlite3.connect(DATABASE)
    cursor = conn.cursor()
    cursor.execute("SELECT name, roll_no, image_path, timestamp FROM students")
    rows = cursor.fetchall()
    conn.close()

    st.write("### Registered Students")
    for row in rows:
        name, roll_no, image_path, timestamp = row
        st.write(f"**Name:** {name}, **Roll No:** {roll_no}, **Timestamp:** {timestamp}")
        st.image(image_path, caption=f"{name} ({roll_no})", use_column_width=True)