File size: 6,457 Bytes
2d75c41 76ea4a3 c5f6154 56a50b1 76ea4a3 c5f6154 56a50b1 4b17a12 56a50b1 c5f6154 4b17a12 76ea4a3 c5f6154 76ea4a3 4b17a12 1945a19 c5f6154 1945a19 c5f6154 76ea4a3 c5f6154 76ea4a3 c5f6154 4b17a12 76ea4a3 1945a19 c5f6154 76ea4a3 c5f6154 76ea4a3 c5f6154 76ea4a3 c5f6154 76ea4a3 4b17a12 76ea4a3 c5f6154 76ea4a3 c5f6154 76ea4a3 c5f6154 76ea4a3 56a50b1 76ea4a3 4b17a12 d4a996d 76ea4a3 d4a996d 76ea4a3 c5f6154 4b17a12 c5f6154 76ea4a3 c5f6154 76ea4a3 c5f6154 76ea4a3 c5f6154 76ea4a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import os
import sqlite3
import cv2
import streamlit as st
from datetime import datetime
from PIL import Image
import numpy as np
from keras.models import load_model
from huggingface_hub import HfApi
import time
# Constants
KNOWN_FACES_DIR = "known_faces" # Directory to save user images
DATABASE = "students.db" # SQLite database file to store student information
# Ensure the directory exists
os.makedirs(KNOWN_FACES_DIR, exist_ok=True)
# Initialize Hugging Face API
hf_token = os.getenv("upload") # The key must match the secret name set in Hugging Face
if not hf_token:
raise ValueError("Hugging Face token not found. Ensure it's set as a secret in Hugging Face")
api = HfApi()
# Repository Details on Hugging Face
REPO_NAME = "face_and_emotion_detection" # Replace with your Hugging Face repository name
REPO_ID = "LovnishVerma/" + REPO_NAME # Replace "LovnishVerma" with your Hugging Face username
REPO_TYPE = "space" # 'space' type for Streamlit-based projects
# Load emotion detection model
model = load_model('CNN_Model_acc_75.h5')
emotion_labels = ['angry', 'fear', 'happy', 'neutral', 'sad', 'surprise']
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
# Initialize the SQLite database
def initialize_database():
conn = sqlite3.connect(DATABASE)
cursor = conn.cursor()
cursor.execute("""
CREATE TABLE IF NOT EXISTS students (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT NOT NULL,
roll_no TEXT NOT NULL UNIQUE,
image_path TEXT NOT NULL,
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
)
""")
conn.commit()
conn.close()
# Save student information in the SQLite database
def save_to_database(name, roll_no, image_path):
conn = sqlite3.connect(DATABASE)
cursor = conn.cursor()
try:
cursor.execute("""
INSERT INTO students (name, roll_no, image_path)
VALUES (?, ?, ?)
""", (name, roll_no, image_path))
conn.commit()
st.success("Data saved successfully!")
except sqlite3.IntegrityError:
st.error("Roll number already exists!")
finally:
conn.close()
# Save the captured image to Hugging Face and return the local path
def save_image_to_hugging_face(image, name, roll_no):
filename = f"{name}_{roll_no}.jpg"
local_path = os.path.join(KNOWN_FACES_DIR, filename)
image.save(local_path)
try:
api.upload_file(
path_or_fileobj=local_path,
path_in_repo=filename,
repo_id=REPO_ID,
repo_type=REPO_TYPE,
token=hf_token
)
st.success(f"Image uploaded to Hugging Face: {filename}")
except Exception as e:
st.error(f"Error uploading image to Hugging Face: {e}")
return local_path
# Process each frame for emotion detection
def process_frame(frame):
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray_frame, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
for (x, y, w, h) in faces:
roi_gray = gray_frame[y:y+h, x:x+w]
roi_color = frame[y:y+h, x:x+w]
face_roi = cv2.resize(roi_color, (48, 48))
face_roi = np.expand_dims(face_roi, axis=0)
face_roi = face_roi / float(48)
predictions = model.predict(face_roi)
emotion = emotion_labels[np.argmax(predictions[0])]
# Display emotion text on face
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.putText(frame, emotion, (x, y+h), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
return frame
# Attendance recording
def record_attendance(name, roll_no, emotion):
conn = sqlite3.connect(DATABASE)
cursor = conn.cursor()
cursor.execute("""
INSERT INTO students (name, roll_no, image_path, timestamp)
VALUES (?, ?, ?, ?)
""", (name, roll_no, f"known_faces/{name}_{roll_no}.jpg", datetime.now()))
conn.commit()
conn.close()
# User Interface
st.title("Student Registration and Attendance")
# Choose input method for the image (webcam or file upload)
capture_mode = st.radio("Choose an option to upload your image", ["Use Webcam", "Upload File"])
if capture_mode == "Use Webcam":
picture = st.camera_input("Take a picture") # Capture image using webcam
elif capture_mode == "Upload File":
picture = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
# Input fields for student details
name = st.text_input("Enter your name")
roll_no = st.text_input("Enter your roll number")
# Handle image upload or webcam capture
if st.button("Register"):
if not name or not roll_no:
st.error("Please fill in both name and roll number.")
elif not picture:
st.error("Please upload or capture an image.")
else:
try:
# Open the image based on capture mode
if capture_mode == "Use Webcam" and picture:
image = Image.open(picture)
elif capture_mode == "Upload File" and picture:
image = Image.open(picture)
# Save the image locally and upload it to Hugging Face
image_path = save_image_to_hugging_face(image, name, roll_no)
# Save user data to the database
save_to_database(name, roll_no, image_path)
# Detect faces and emotions
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
if not ret:
break
frame = process_frame(frame)
st.image(frame, channels="BGR", use_column_width=True)
record_attendance(name, roll_no, emotion)
break # Stop after capturing one frame
cap.release()
except Exception as e:
st.error(f"An error occurred: {e}")
# Display registered students
if st.checkbox("Show registered students"):
conn = sqlite3.connect(DATABASE)
cursor = conn.cursor()
cursor.execute("SELECT name, roll_no, image_path, timestamp FROM students")
rows = cursor.fetchall()
conn.close()
st.write("### Registered Students")
for row in rows:
name, roll_no, image_path, timestamp = row
st.write(f"**Name:** {name}, **Roll No:** {roll_no}, **Timestamp:** {timestamp}")
st.image(image_path, caption=f"{name} ({roll_no})", use_column_width=True)
|