|
import sqlite3 |
|
import streamlit as st |
|
import cv2 |
|
import numpy as np |
|
import time |
|
import os |
|
from keras.models import load_model |
|
from PIL import Image |
|
import tempfile |
|
|
|
|
|
st.markdown("<h1 style='text-align: center;'>Emotion Detection with Face Recognition</h1>", unsafe_allow_html=True) |
|
|
|
|
|
st.markdown("<h3 style='text-align: center;'>angry, fear, happy, neutral, sad, surprise</h3>", unsafe_allow_html=True) |
|
|
|
|
|
DATABASE_NAME = "emotion_recognition.db" |
|
|
|
def init_db(): |
|
conn = sqlite3.connect(DATABASE_NAME) |
|
cursor = conn.cursor() |
|
cursor.execute(''' |
|
CREATE TABLE IF NOT EXISTS registered_faces ( |
|
id INTEGER PRIMARY KEY AUTOINCREMENT, |
|
name TEXT NOT NULL, |
|
image BLOB NOT NULL |
|
) |
|
''') |
|
cursor.execute(''' |
|
CREATE TABLE IF NOT EXISTS attendance_log ( |
|
id INTEGER PRIMARY KEY AUTOINCREMENT, |
|
name TEXT NOT NULL, |
|
emotion TEXT NOT NULL, |
|
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP |
|
) |
|
''') |
|
conn.commit() |
|
conn.close() |
|
|
|
init_db() |
|
|
|
def register_face(name, image): |
|
conn = sqlite3.connect(DATABASE_NAME) |
|
cursor = conn.cursor() |
|
cursor.execute("INSERT INTO registered_faces (name, image) VALUES (?, ?)", (name, image)) |
|
conn.commit() |
|
conn.close() |
|
|
|
def fetch_registered_faces(): |
|
conn = sqlite3.connect(DATABASE_NAME) |
|
cursor = conn.cursor() |
|
cursor.execute("SELECT id, name FROM registered_faces") |
|
rows = cursor.fetchall() |
|
conn.close() |
|
return rows |
|
|
|
def log_attendance(name, emotion): |
|
conn = sqlite3.connect(DATABASE_NAME) |
|
cursor = conn.cursor() |
|
cursor.execute("INSERT INTO attendance_log (name, emotion) VALUES (?, ?)", (name, emotion)) |
|
conn.commit() |
|
conn.close() |
|
|
|
def fetch_recent_activity(): |
|
conn = sqlite3.connect(DATABASE_NAME) |
|
cursor = conn.cursor() |
|
cursor.execute("SELECT name, emotion, timestamp FROM attendance_log ORDER BY timestamp DESC LIMIT 10") |
|
rows = cursor.fetchall() |
|
conn.close() |
|
return rows |
|
|
|
|
|
@st.cache_resource |
|
def load_emotion_model(): |
|
model = load_model('CNN_Model_acc_75.h5') |
|
return model |
|
|
|
model = load_emotion_model() |
|
|
|
|
|
emotion_labels = ['angry', 'fear', 'happy', 'neutral', 'sad', 'surprise'] |
|
|
|
|
|
sidebar_choice = st.sidebar.selectbox("Choose an option", ["Emotion Detection", "Register New Face", "View Registered Faces", "Recent Activity"]) |
|
|
|
if sidebar_choice == "Register New Face": |
|
st.header("Register New Face") |
|
name = st.text_input("Enter Name") |
|
uploaded_image = st.file_uploader("Upload Face Image", type=["png", "jpg", "jpeg"]) |
|
if name and uploaded_image: |
|
image = np.array(Image.open(uploaded_image)) |
|
_, buffer = cv2.imencode('.jpg', image) |
|
register_face(name, buffer.tobytes()) |
|
st.success(f"Successfully registered {name}!") |
|
|
|
elif sidebar_choice == "View Registered Faces": |
|
st.header("Registered Faces") |
|
faces = fetch_registered_faces() |
|
if faces: |
|
for face_id, name in faces: |
|
st.write(f"ID: {face_id}, Name: {name}") |
|
else: |
|
st.write("No faces registered yet.") |
|
|
|
elif sidebar_choice == "Recent Activity": |
|
st.header("Recent Activity (Attendance Log)") |
|
logs = fetch_recent_activity() |
|
if logs: |
|
for name, emotion, timestamp in logs: |
|
st.write(f"Name: {name}, Emotion: {emotion}, Timestamp: {timestamp}") |
|
else: |
|
st.write("No recent activity found.") |
|
|
|
else: |
|
st.sidebar.write("Emotion Labels: Angry, Fear, Happy, Neutral, Sad, Surprise") |
|
|
|
upload_choice = st.radio("Choose input source", ["Upload Image", "Upload Video", "Camera"]) |
|
|
|
def process_frame(frame): |
|
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) |
|
faces = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml').detectMultiScale(gray_frame, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)) |
|
|
|
result_text = "" |
|
for (x, y, w, h) in faces: |
|
roi_gray = gray_frame[y:y+h, x:x+w] |
|
roi_color = frame[y:y+h, x:x+w] |
|
face_roi = cv2.resize(roi_color, (48, 48)) |
|
face_roi = cv2.cvtColor(face_roi, cv2.COLOR_BGR2RGB) / 255.0 |
|
face_roi = np.expand_dims(face_roi, axis=0) |
|
|
|
predictions = model.predict(face_roi) |
|
emotion = emotion_labels[np.argmax(predictions[0])] |
|
|
|
label = "Unknown" |
|
log_attendance(label, emotion) |
|
|
|
result_text = f"{label} is feeling {emotion}" |
|
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2) |
|
cv2.putText(frame, result_text, (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) |
|
return frame, result_text |
|
|
|
if upload_choice == "Upload Image": |
|
uploaded_image = st.file_uploader("Upload Image", type=["png", "jpg", "jpeg"]) |
|
if uploaded_image: |
|
image = np.array(Image.open(uploaded_image)) |
|
frame, result_text = process_frame(image) |
|
st.image(frame, caption='Processed Image', use_column_width=True) |
|
st.markdown(f"<h3 style='text-align: center;'>{result_text}</h3>", unsafe_allow_html=True) |
|
|
|
elif upload_choice == "Upload Video": |
|
uploaded_video = st.file_uploader("Upload Video", type=["mp4", "avi", "mkv"]) |
|
if uploaded_video: |
|
with tempfile.NamedTemporaryFile(delete=False) as tfile: |
|
tfile.write(uploaded_video.read()) |
|
video_source = cv2.VideoCapture(tfile.name) |
|
while True: |
|
ret, frame = video_source.read() |
|
if not ret: |
|
break |
|
frame, result_text = process_frame(frame) |
|
st.image(frame, channels="BGR", use_column_width=True) |
|
|
|
elif upload_choice == "Camera": |
|
image = st.camera_input("Take a picture") |
|
if image: |
|
frame = np.array(Image.open(image)) |
|
frame, result_text = process_frame(frame) |
|
st.image(frame, caption='Processed Image', use_column_width=True) |
|
st.markdown(f"<h3 style='text-align: center;'>{result_text}</h3>", unsafe_allow_html=True) |
|
|