Update app.py
Browse files
app.py
CHANGED
@@ -1,62 +1,93 @@
|
|
1 |
import streamlit as st
|
|
|
2 |
import os
|
|
|
|
|
3 |
from PIL import Image
|
4 |
from huggingface_hub import HfApi
|
|
|
5 |
|
6 |
# Constants
|
7 |
KNOWN_FACES_DIR = "known_faces" # Directory to save user images
|
|
|
|
|
8 |
REPO_NAME = "face_and_emotion_detection"
|
9 |
REPO_ID = f"LovnishVerma/{REPO_NAME}"
|
10 |
|
11 |
-
# Ensure the
|
12 |
os.makedirs(KNOWN_FACES_DIR, exist_ok=True)
|
13 |
|
14 |
-
# Retrieve Hugging Face token from environment variable
|
15 |
-
hf_token = os.getenv("upload") # Replace with your actual Hugging Face token
|
16 |
-
if not hf_token:
|
17 |
-
st.error("Hugging Face token not found. Please set the environment variable.")
|
18 |
-
st.stop()
|
19 |
-
|
20 |
# Initialize Hugging Face API
|
|
|
21 |
api = HfApi()
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
37 |
|
38 |
-
#
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
repo_id=REPO_ID,
|
49 |
-
repo_type="space",
|
50 |
-
token=hf_token,
|
51 |
-
)
|
52 |
-
st.success(f"Image saved to {KNOWN_FACES_DIR} and uploaded to Hugging Face as {filename}.")
|
53 |
-
except Exception as e:
|
54 |
-
st.error(f"Error saving or uploading image: {e}")
|
55 |
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
# Streamlit UI
|
59 |
-
st.title("Student Registration with
|
60 |
|
61 |
# Input fields for student details
|
62 |
name = st.text_input("Enter your name")
|
@@ -85,7 +116,19 @@ if st.button("Register"):
|
|
85 |
elif capture_mode == "Upload File" and picture:
|
86 |
image = Image.open(picture)
|
87 |
|
88 |
-
#
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
except Exception as e:
|
91 |
st.error(f"An error occurred: {e}")
|
|
|
1 |
import streamlit as st
|
2 |
+
import cv2
|
3 |
import os
|
4 |
+
import numpy as np
|
5 |
+
from keras.models import load_model
|
6 |
from PIL import Image
|
7 |
from huggingface_hub import HfApi
|
8 |
+
from datetime import datetime
|
9 |
|
10 |
# Constants
|
11 |
KNOWN_FACES_DIR = "known_faces" # Directory to save user images
|
12 |
+
EMOTION_MODEL_FILE = "CNN_Model_acc_75.h5"
|
13 |
+
EMOTION_LABELS = ["Angry", "Disgust", "Fear", "Happy", "Sad", "Surprise", "Neutral"]
|
14 |
REPO_NAME = "face_and_emotion_detection"
|
15 |
REPO_ID = f"LovnishVerma/{REPO_NAME}"
|
16 |
|
17 |
+
# Ensure the directories exist
|
18 |
os.makedirs(KNOWN_FACES_DIR, exist_ok=True)
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
# Initialize Hugging Face API
|
21 |
+
hf_token = os.getenv("upload") # Replace with your actual Hugging Face token
|
22 |
api = HfApi()
|
23 |
|
24 |
+
# Load emotion detection model
|
25 |
+
try:
|
26 |
+
emotion_model = load_model(EMOTION_MODEL_FILE)
|
27 |
+
except Exception as e:
|
28 |
+
st.error(f"Error loading emotion model: {e}")
|
29 |
+
st.stop()
|
30 |
|
31 |
+
# Face and Emotion Detection Function
|
32 |
+
def detect_faces_and_emotions(image):
|
33 |
+
"""Detect faces and emotions in the image"""
|
34 |
+
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
35 |
+
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
36 |
+
faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.3, minNeighbors=5)
|
37 |
|
38 |
+
emotion_label = None
|
39 |
+
for (x, y, w, h) in faces:
|
40 |
+
face = gray_image[y:y+h, x:x+w]
|
41 |
+
resized_face = cv2.resize(face, (48, 48)) # Resize face to 48x48
|
42 |
+
rgb_face = cv2.cvtColor(resized_face, cv2.COLOR_GRAY2RGB)
|
43 |
+
normalized_face = rgb_face / 255.0
|
44 |
+
reshaped_face = np.reshape(normalized_face, (1, 48, 48, 3))
|
45 |
|
46 |
+
# Predict the emotion
|
47 |
+
emotion_prediction = emotion_model.predict(reshaped_face)
|
48 |
+
emotion_label = np.argmax(emotion_prediction)
|
49 |
+
|
50 |
+
return faces, EMOTION_LABELS[emotion_label] if emotion_label else None
|
51 |
+
|
52 |
+
# Face Recognition Function
|
53 |
+
def recognize_face(image):
|
54 |
+
"""Recognize the face in the uploaded image by comparing with known faces"""
|
55 |
+
recognizer = cv2.face.LBPHFaceRecognizer_create()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
known_faces = []
|
58 |
+
labels = []
|
59 |
+
|
60 |
+
# Load known faces from the directory
|
61 |
+
for filename in os.listdir(KNOWN_FACES_DIR):
|
62 |
+
if filename.endswith(".jpg"):
|
63 |
+
image_path = os.path.join(KNOWN_FACES_DIR, filename)
|
64 |
+
known_image = cv2.imread(image_path)
|
65 |
+
gray_image = cv2.cvtColor(known_image, cv2.COLOR_BGR2GRAY)
|
66 |
+
faces = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml').detectMultiScale(gray_image, scaleFactor=1.3, minNeighbors=5)
|
67 |
+
|
68 |
+
for (x, y, w, h) in faces:
|
69 |
+
face = gray_image[y:y+h, x:x+w]
|
70 |
+
known_faces.append(face)
|
71 |
+
labels.append(filename.split(".")[0]) # Use image name as label
|
72 |
+
|
73 |
+
if known_faces:
|
74 |
+
recognizer.train(known_faces, np.array(range(len(labels)))) # Train recognizer with known faces
|
75 |
+
|
76 |
+
# Detect faces in the uploaded image
|
77 |
+
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
78 |
+
faces = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml').detectMultiScale(gray_image, scaleFactor=1.3, minNeighbors=5)
|
79 |
+
|
80 |
+
recognized_name = "Unknown"
|
81 |
+
for (x, y, w, h) in faces:
|
82 |
+
face = gray_image[y:y+h, x:x+w]
|
83 |
+
label, confidence = recognizer.predict(face)
|
84 |
+
if confidence < 100: # Confidence threshold
|
85 |
+
recognized_name = labels[label] # Get the name from labels
|
86 |
+
|
87 |
+
return recognized_name
|
88 |
|
89 |
# Streamlit UI
|
90 |
+
st.title("Student Registration with Face Recognition and Emotion Detection")
|
91 |
|
92 |
# Input fields for student details
|
93 |
name = st.text_input("Enter your name")
|
|
|
116 |
elif capture_mode == "Upload File" and picture:
|
117 |
image = Image.open(picture)
|
118 |
|
119 |
+
# Convert the image to numpy array for processing
|
120 |
+
img_array = np.array(image)
|
121 |
+
|
122 |
+
# Detect faces and emotions
|
123 |
+
faces, emotion_label = detect_faces_and_emotions(img_array)
|
124 |
+
if faces:
|
125 |
+
st.success(f"Emotion Detected: {emotion_label}")
|
126 |
+
else:
|
127 |
+
st.warning("No face detected.")
|
128 |
+
|
129 |
+
# Perform face recognition
|
130 |
+
recognized_name = recognize_face(img_array)
|
131 |
+
st.success(f"Face Recognized as: {recognized_name}")
|
132 |
+
|
133 |
except Exception as e:
|
134 |
st.error(f"An error occurred: {e}")
|