Update app.py
Browse files
app.py
CHANGED
@@ -4,90 +4,79 @@ import os
|
|
4 |
import numpy as np
|
5 |
from keras.models import load_model
|
6 |
from PIL import Image
|
7 |
-
|
8 |
from datetime import datetime
|
9 |
|
10 |
# Constants
|
11 |
-
|
|
|
12 |
EMOTION_MODEL_FILE = "CNN_Model_acc_75.h5"
|
13 |
EMOTION_LABELS = ["Angry", "Disgust", "Fear", "Happy", "Sad", "Surprise", "Neutral"]
|
14 |
-
REPO_NAME = "face_and_emotion_detection"
|
15 |
-
REPO_ID = f"LovnishVerma/{REPO_NAME}"
|
16 |
|
17 |
-
#
|
18 |
-
os.makedirs(KNOWN_FACES_DIR, exist_ok=True)
|
19 |
-
|
20 |
-
# Initialize Hugging Face API
|
21 |
-
hf_token = os.getenv("upload") # Replace with your actual Hugging Face token
|
22 |
-
api = HfApi()
|
23 |
-
|
24 |
-
# Load emotion detection model
|
25 |
try:
|
26 |
emotion_model = load_model(EMOTION_MODEL_FILE)
|
27 |
except Exception as e:
|
28 |
st.error(f"Error loading emotion model: {e}")
|
29 |
st.stop()
|
30 |
|
31 |
-
#
|
32 |
-
def
|
33 |
-
"""
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
rgb_face = cv2.cvtColor(resized_face, cv2.COLOR_GRAY2RGB)
|
43 |
-
normalized_face = rgb_face / 255.0
|
44 |
-
reshaped_face = np.reshape(normalized_face, (1, 48, 48, 3))
|
45 |
|
46 |
-
#
|
47 |
-
|
48 |
-
|
|
|
|
|
49 |
|
50 |
-
return
|
51 |
|
52 |
-
#
|
53 |
-
|
54 |
-
"""Recognize the face in the uploaded image by comparing with known faces"""
|
55 |
-
recognizer = cv2.face.LBPHFaceRecognizer_create()
|
56 |
-
|
57 |
-
known_faces = []
|
58 |
-
labels = []
|
59 |
-
|
60 |
-
# Load known faces from the directory
|
61 |
-
for filename in os.listdir(KNOWN_FACES_DIR):
|
62 |
-
if filename.endswith(".jpg"):
|
63 |
-
image_path = os.path.join(KNOWN_FACES_DIR, filename)
|
64 |
-
known_image = cv2.imread(image_path)
|
65 |
-
gray_image = cv2.cvtColor(known_image, cv2.COLOR_BGR2GRAY)
|
66 |
-
faces = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml').detectMultiScale(gray_image, scaleFactor=1.3, minNeighbors=5)
|
67 |
-
|
68 |
-
for (x, y, w, h) in faces:
|
69 |
-
face = gray_image[y:y+h, x:x+w]
|
70 |
-
known_faces.append(face)
|
71 |
-
labels.append(filename.split(".")[0]) # Use image name as label
|
72 |
-
|
73 |
-
if known_faces:
|
74 |
-
recognizer.train(known_faces, np.array(range(len(labels)))) # Train recognizer with known faces
|
75 |
-
|
76 |
-
# Detect faces in the uploaded image
|
77 |
-
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
78 |
-
faces = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml').detectMultiScale(gray_image, scaleFactor=1.3, minNeighbors=5)
|
79 |
-
|
80 |
-
recognized_name = "Unknown"
|
81 |
-
for (x, y, w, h) in faces:
|
82 |
-
face = gray_image[y:y+h, x:x+w]
|
83 |
-
label, confidence = recognizer.predict(face)
|
84 |
-
if confidence < 100: # Confidence threshold
|
85 |
-
recognized_name = labels[label] # Get the name from labels
|
86 |
-
|
87 |
-
return recognized_name
|
88 |
|
89 |
-
# Streamlit UI
|
90 |
-
st.title("Student Registration with
|
91 |
|
92 |
# Input fields for student details
|
93 |
name = st.text_input("Enter your name")
|
@@ -116,19 +105,90 @@ if st.button("Register"):
|
|
116 |
elif capture_mode == "Upload File" and picture:
|
117 |
image = Image.open(picture)
|
118 |
|
119 |
-
#
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
st.success(f"Emotion Detected: {emotion_label}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
else:
|
127 |
st.warning("No face detected.")
|
128 |
-
|
129 |
-
# Perform face recognition
|
130 |
-
recognized_name = recognize_face(img_array)
|
131 |
-
st.success(f"Face Recognized as: {recognized_name}")
|
132 |
-
|
133 |
-
except Exception as e:
|
134 |
-
st.error(f"An error occurred: {e}")
|
|
|
4 |
import numpy as np
|
5 |
from keras.models import load_model
|
6 |
from PIL import Image
|
7 |
+
import sqlite3
|
8 |
from datetime import datetime
|
9 |
|
10 |
# Constants
|
11 |
+
ROOT_DIR = os.getcwd() # Root directory of the project
|
12 |
+
DATABASE = "students.db" # SQLite database file to store student information
|
13 |
EMOTION_MODEL_FILE = "CNN_Model_acc_75.h5"
|
14 |
EMOTION_LABELS = ["Angry", "Disgust", "Fear", "Happy", "Sad", "Surprise", "Neutral"]
|
|
|
|
|
15 |
|
16 |
+
# Load the emotion detection model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
try:
|
18 |
emotion_model = load_model(EMOTION_MODEL_FILE)
|
19 |
except Exception as e:
|
20 |
st.error(f"Error loading emotion model: {e}")
|
21 |
st.stop()
|
22 |
|
23 |
+
# Database Functions
|
24 |
+
def initialize_database():
|
25 |
+
""" Initializes the SQLite database by creating the students table if it doesn't exist. """
|
26 |
+
conn = sqlite3.connect(DATABASE)
|
27 |
+
cursor = conn.cursor()
|
28 |
+
cursor.execute("""
|
29 |
+
CREATE TABLE IF NOT EXISTS students (
|
30 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
31 |
+
name TEXT NOT NULL,
|
32 |
+
roll_no TEXT NOT NULL UNIQUE,
|
33 |
+
image_path TEXT NOT NULL,
|
34 |
+
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
|
35 |
+
)
|
36 |
+
""")
|
37 |
+
conn.commit()
|
38 |
+
conn.close()
|
39 |
+
|
40 |
+
def save_to_database(name, roll_no, image_path):
|
41 |
+
""" Saves the student's data to the database. """
|
42 |
+
conn = sqlite3.connect(DATABASE)
|
43 |
+
cursor = conn.cursor()
|
44 |
+
try:
|
45 |
+
cursor.execute("""
|
46 |
+
INSERT INTO students (name, roll_no, image_path)
|
47 |
+
VALUES (?, ?, ?)
|
48 |
+
""", (name, roll_no, image_path))
|
49 |
+
conn.commit()
|
50 |
+
st.success("Data saved successfully!")
|
51 |
+
except sqlite3.IntegrityError:
|
52 |
+
st.error("Roll number already exists!")
|
53 |
+
finally:
|
54 |
+
conn.close()
|
55 |
+
|
56 |
+
def save_image_to_root_directory(image, name, roll_no):
|
57 |
+
""" Saves the image locally in the root directory. """
|
58 |
+
# Construct the local file path
|
59 |
+
filename = f"{name}_{roll_no}.jpg"
|
60 |
+
local_path = os.path.join(ROOT_DIR, filename)
|
61 |
|
62 |
+
try:
|
63 |
+
# Convert image to RGB if necessary
|
64 |
+
if image.mode != "RGB":
|
65 |
+
image = image.convert("RGB")
|
|
|
|
|
|
|
66 |
|
67 |
+
# Save the image to the root directory
|
68 |
+
image.save(local_path)
|
69 |
+
st.success(f"Image saved to {local_path}.")
|
70 |
+
except Exception as e:
|
71 |
+
st.error(f"Error saving image: {e}")
|
72 |
|
73 |
+
return local_path
|
74 |
|
75 |
+
# Initialize the database when the app starts
|
76 |
+
initialize_database()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
# Streamlit user interface (UI)
|
79 |
+
st.title("Student Registration with Image Upload and Face Recognition")
|
80 |
|
81 |
# Input fields for student details
|
82 |
name = st.text_input("Enter your name")
|
|
|
105 |
elif capture_mode == "Upload File" and picture:
|
106 |
image = Image.open(picture)
|
107 |
|
108 |
+
# Save the image locally in the root directory
|
109 |
+
image_path = save_image_to_root_directory(image, name, roll_no)
|
110 |
+
save_to_database(name, roll_no, image_path)
|
111 |
+
except Exception as e:
|
112 |
+
st.error(f"An error occurred: {e}")
|
113 |
+
|
114 |
+
# Face and Emotion Detection Function
|
115 |
+
def detect_faces_and_emotions(image):
|
116 |
+
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
117 |
+
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
118 |
+
faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.3, minNeighbors=5)
|
119 |
+
|
120 |
+
for (x, y, w, h) in faces:
|
121 |
+
face = gray_image[y:y+h, x:x+w]
|
122 |
+
resized_face = cv2.resize(face, (48, 48)) # Resize face to 48x48
|
123 |
+
rgb_face = cv2.cvtColor(resized_face, cv2.COLOR_GRAY2RGB)
|
124 |
+
normalized_face = rgb_face / 255.0
|
125 |
+
reshaped_face = np.reshape(normalized_face, (1, 48, 48, 3))
|
126 |
+
|
127 |
+
# Predict the emotion
|
128 |
+
emotion_prediction = emotion_model.predict(reshaped_face)
|
129 |
+
emotion_label = np.argmax(emotion_prediction)
|
130 |
+
return EMOTION_LABELS[emotion_label]
|
131 |
+
return None
|
132 |
+
|
133 |
+
# Face Recognition: Compare uploaded image with all images in the root directory
|
134 |
+
def recognize_face(image_path):
|
135 |
+
""" Compares the uploaded image with all images in the root directory """
|
136 |
+
img = cv2.imread(image_path)
|
137 |
+
gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
138 |
+
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
139 |
+
faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.3, minNeighbors=5)
|
140 |
+
|
141 |
+
recognized_name = None
|
142 |
+
for (x, y, w, h) in faces:
|
143 |
+
face = gray_image[y:y+h, x:x+w]
|
144 |
+
for filename in os.listdir(ROOT_DIR):
|
145 |
+
if filename.endswith(('.jpg', '.jpeg', '.png')):
|
146 |
+
stored_image = cv2.imread(os.path.join(ROOT_DIR, filename))
|
147 |
+
stored_gray = cv2.cvtColor(stored_image, cv2.COLOR_BGR2GRAY)
|
148 |
+
stored_faces = face_cascade.detectMultiScale(stored_gray)
|
149 |
+
for (sx, sy, sw, sh) in stored_faces:
|
150 |
+
stored_face = stored_gray[sy:sy+sh, sx:sx+sw]
|
151 |
+
resized_stored_face = cv2.resize(stored_face, (48, 48))
|
152 |
+
rgb_stored_face = cv2.cvtColor(resized_stored_face, cv2.COLOR_GRAY2RGB)
|
153 |
+
stored_normalized_face = rgb_stored_face / 255.0
|
154 |
+
stored_reshaped_face = np.reshape(stored_normalized_face, (1, 48, 48, 3))
|
155 |
+
|
156 |
+
# Compare the faces (you can use a more advanced method like facial embeddings, but for simplicity, this is just basic comparison)
|
157 |
+
if np.allclose(stored_reshaped_face, face):
|
158 |
+
recognized_name = filename.split('_')[0] # Extract the name from the file name
|
159 |
+
break
|
160 |
+
return recognized_name
|
161 |
+
|
162 |
+
# UI for Emotion and Face Detection
|
163 |
+
if st.sidebar.selectbox("Menu", ["Register Student", "Face Recognition and Emotion Detection"]) == "Face Recognition and Emotion Detection":
|
164 |
+
st.subheader("Recognize Faces and Detect Emotions")
|
165 |
+
action = st.radio("Choose Action", ["Upload Image", "Use Webcam"])
|
166 |
+
|
167 |
+
if action == "Upload Image":
|
168 |
+
uploaded_file = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"])
|
169 |
+
if uploaded_file:
|
170 |
+
img = Image.open(uploaded_file)
|
171 |
+
img_array = np.array(img)
|
172 |
+
emotion_label = detect_faces_and_emotions(img_array)
|
173 |
+
recognized_name = recognize_face(uploaded_file)
|
174 |
+
if emotion_label:
|
175 |
st.success(f"Emotion Detected: {emotion_label}")
|
176 |
+
if recognized_name:
|
177 |
+
st.success(f"Face Recognized: {recognized_name}")
|
178 |
+
else:
|
179 |
+
st.warning("No face detected.")
|
180 |
+
|
181 |
+
elif action == "Use Webcam":
|
182 |
+
st.info("Use the camera input widget to capture an image.")
|
183 |
+
camera_image = st.camera_input("Take a picture")
|
184 |
+
if camera_image:
|
185 |
+
img = Image.open(camera_image)
|
186 |
+
img_array = np.array(img)
|
187 |
+
emotion_label = detect_faces_and_emotions(img_array)
|
188 |
+
recognized_name = recognize_face(camera_image)
|
189 |
+
if emotion_label:
|
190 |
+
st.success(f"Emotion Detected: {emotion_label}")
|
191 |
+
if recognized_name:
|
192 |
+
st.success(f"Face Recognized: {recognized_name}")
|
193 |
else:
|
194 |
st.warning("No face detected.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|