Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,12 @@
|
|
1 |
import os
|
2 |
import sqlite3
|
3 |
-
import cv2
|
4 |
import streamlit as st
|
5 |
-
from datetime import datetime
|
6 |
from PIL import Image
|
7 |
import numpy as np
|
|
|
8 |
from keras.models import load_model
|
|
|
9 |
from huggingface_hub import HfApi
|
10 |
-
import time
|
11 |
|
12 |
# Constants
|
13 |
KNOWN_FACES_DIR = "known_faces" # Directory to save user images
|
@@ -17,7 +16,7 @@ DATABASE = "students.db" # SQLite database file to store student information
|
|
17 |
os.makedirs(KNOWN_FACES_DIR, exist_ok=True)
|
18 |
|
19 |
# Initialize Hugging Face API
|
20 |
-
hf_token = os.getenv("upload") #
|
21 |
if not hf_token:
|
22 |
raise ValueError("Hugging Face token not found. Ensure it's set as a secret in Hugging Face")
|
23 |
api = HfApi()
|
@@ -64,13 +63,18 @@ def save_to_database(name, roll_no, image_path):
|
|
64 |
finally:
|
65 |
conn.close()
|
66 |
|
67 |
-
# Save the captured image
|
68 |
def save_image_to_hugging_face(image, name, roll_no):
|
|
|
69 |
filename = f"{name}_{roll_no}.jpg"
|
70 |
local_path = os.path.join(KNOWN_FACES_DIR, filename)
|
|
|
|
|
71 |
image.save(local_path)
|
72 |
-
|
|
|
73 |
try:
|
|
|
74 |
api.upload_file(
|
75 |
path_or_fileobj=local_path,
|
76 |
path_in_repo=filename,
|
@@ -81,7 +85,7 @@ def save_image_to_hugging_face(image, name, roll_no):
|
|
81 |
st.success(f"Image uploaded to Hugging Face: {filename}")
|
82 |
except Exception as e:
|
83 |
st.error(f"Error uploading image to Hugging Face: {e}")
|
84 |
-
|
85 |
return local_path
|
86 |
|
87 |
# Process each frame for emotion detection
|
@@ -103,101 +107,61 @@ def process_frame(frame):
|
|
103 |
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
|
104 |
cv2.putText(frame, emotion, (x, y+h), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
105 |
|
106 |
-
return frame
|
107 |
-
|
108 |
-
#
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
#
|
120 |
-
st.
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
if
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
# Save the image locally and upload it to Hugging Face
|
154 |
-
image_path = save_image_to_hugging_face(image, name, roll_no)
|
155 |
-
|
156 |
-
# Save user data to the database
|
157 |
-
save_to_database(name, roll_no, image_path)
|
158 |
-
|
159 |
-
st.success("Registration Successful!")
|
160 |
-
|
161 |
-
except Exception as e:
|
162 |
-
st.error(f"An error occurred: {e}")
|
163 |
-
|
164 |
-
elif tabs == "Record Attendance":
|
165 |
-
st.subheader("Record Attendance")
|
166 |
-
|
167 |
-
# Initialize the webcam for face detection and emotion recognition
|
168 |
-
cap = cv2.VideoCapture(0)
|
169 |
-
|
170 |
-
while True:
|
171 |
-
ret, frame = cap.read()
|
172 |
-
if not ret:
|
173 |
-
break
|
174 |
-
|
175 |
-
# Process the frame to detect faces and emotions
|
176 |
-
frame, faces = process_frame(frame)
|
177 |
-
|
178 |
-
# Show the image with detected faces and emotions
|
179 |
-
st.image(frame, channels="BGR", use_column_width=True)
|
180 |
-
|
181 |
-
# When a face is detected, assume it's the person for attendance
|
182 |
-
if len(faces) > 0:
|
183 |
-
# Assume the first face detected corresponds to the student
|
184 |
-
x, y, w, h = faces[0]
|
185 |
-
# Extract the emotion from the frame (for simplicity, use the first detected face)
|
186 |
-
name = "John Doe" # Replace with the actual name after face recognition
|
187 |
-
roll_no = "12345" # Replace with the actual roll number
|
188 |
-
emotion = emotion_labels[np.argmax(model.predict(cv2.resize(frame[y:y+h, x:x+w], (48, 48)).reshape(1, 48, 48, 3)))] # Get emotion of detected face
|
189 |
-
|
190 |
-
# Record attendance based on the detected information
|
191 |
-
if st.button("Record Attendance"):
|
192 |
-
record_attendance(name, roll_no, emotion)
|
193 |
-
st.success(f"Attendance recorded for {name} ({roll_no}) with emotion: {emotion}")
|
194 |
break # Stop after capturing one frame
|
195 |
|
196 |
-
|
197 |
|
198 |
-
|
199 |
-
|
200 |
|
|
|
|
|
201 |
conn = sqlite3.connect(DATABASE)
|
202 |
cursor = conn.cursor()
|
203 |
cursor.execute("SELECT name, roll_no, image_path, timestamp FROM students")
|
|
|
1 |
import os
|
2 |
import sqlite3
|
|
|
3 |
import streamlit as st
|
|
|
4 |
from PIL import Image
|
5 |
import numpy as np
|
6 |
+
import cv2
|
7 |
from keras.models import load_model
|
8 |
+
from datetime import datetime
|
9 |
from huggingface_hub import HfApi
|
|
|
10 |
|
11 |
# Constants
|
12 |
KNOWN_FACES_DIR = "known_faces" # Directory to save user images
|
|
|
16 |
os.makedirs(KNOWN_FACES_DIR, exist_ok=True)
|
17 |
|
18 |
# Initialize Hugging Face API
|
19 |
+
hf_token = os.getenv("upload") # Ensure this is set correctly as a secret in Hugging Face
|
20 |
if not hf_token:
|
21 |
raise ValueError("Hugging Face token not found. Ensure it's set as a secret in Hugging Face")
|
22 |
api = HfApi()
|
|
|
63 |
finally:
|
64 |
conn.close()
|
65 |
|
66 |
+
# Save the captured image locally in known_faces directory and upload to Hugging Face
|
67 |
def save_image_to_hugging_face(image, name, roll_no):
|
68 |
+
# Create a filename based on the student name and roll number
|
69 |
filename = f"{name}_{roll_no}.jpg"
|
70 |
local_path = os.path.join(KNOWN_FACES_DIR, filename)
|
71 |
+
|
72 |
+
# Save the image locally
|
73 |
image.save(local_path)
|
74 |
+
st.success(f"Image saved locally to {local_path}")
|
75 |
+
|
76 |
try:
|
77 |
+
# Upload the image to Hugging Face repository
|
78 |
api.upload_file(
|
79 |
path_or_fileobj=local_path,
|
80 |
path_in_repo=filename,
|
|
|
85 |
st.success(f"Image uploaded to Hugging Face: {filename}")
|
86 |
except Exception as e:
|
87 |
st.error(f"Error uploading image to Hugging Face: {e}")
|
88 |
+
|
89 |
return local_path
|
90 |
|
91 |
# Process each frame for emotion detection
|
|
|
107 |
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
|
108 |
cv2.putText(frame, emotion, (x, y+h), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
109 |
|
110 |
+
return frame
|
111 |
+
|
112 |
+
# User Interface for registration
|
113 |
+
st.title("Student Registration and Attendance")
|
114 |
+
|
115 |
+
# Choose input method for the image (webcam or file upload)
|
116 |
+
capture_mode = st.radio("Choose an option to upload your image", ["Use Webcam", "Upload File"])
|
117 |
+
|
118 |
+
if capture_mode == "Use Webcam":
|
119 |
+
picture = st.camera_input("Take a picture") # Capture image using webcam
|
120 |
+
elif capture_mode == "Upload File":
|
121 |
+
picture = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
122 |
+
|
123 |
+
# Input fields for student details
|
124 |
+
name = st.text_input("Enter your name")
|
125 |
+
roll_no = st.text_input("Enter your roll number")
|
126 |
+
|
127 |
+
# Handle image upload or webcam capture
|
128 |
+
if st.button("Register"):
|
129 |
+
if not name or not roll_no:
|
130 |
+
st.error("Please fill in both name and roll number.")
|
131 |
+
elif not picture:
|
132 |
+
st.error("Please upload or capture an image.")
|
133 |
+
else:
|
134 |
+
try:
|
135 |
+
# Open the image based on capture mode
|
136 |
+
if capture_mode == "Use Webcam" and picture:
|
137 |
+
image = Image.open(picture)
|
138 |
+
elif capture_mode == "Upload File" and picture:
|
139 |
+
image = Image.open(picture)
|
140 |
+
|
141 |
+
# Save the image locally and upload it to Hugging Face
|
142 |
+
image_path = save_image_to_hugging_face(image, name, roll_no)
|
143 |
+
|
144 |
+
# Save user data to the database
|
145 |
+
save_to_database(name, roll_no, image_path)
|
146 |
+
|
147 |
+
# Detect faces and emotions
|
148 |
+
cap = cv2.VideoCapture(0)
|
149 |
+
while True:
|
150 |
+
ret, frame = cap.read()
|
151 |
+
if not ret:
|
152 |
+
break
|
153 |
+
|
154 |
+
frame = process_frame(frame)
|
155 |
+
st.image(frame, channels="BGR", use_column_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
break # Stop after capturing one frame
|
157 |
|
158 |
+
cap.release()
|
159 |
|
160 |
+
except Exception as e:
|
161 |
+
st.error(f"An error occurred: {e}")
|
162 |
|
163 |
+
# Display registered students and attendance history
|
164 |
+
if st.checkbox("Show registered students"):
|
165 |
conn = sqlite3.connect(DATABASE)
|
166 |
cursor = conn.cursor()
|
167 |
cursor.execute("SELECT name, roll_no, image_path, timestamp FROM students")
|