Update app.py
Browse files
app.py
CHANGED
@@ -1,49 +1,55 @@
|
|
1 |
import streamlit as st
|
2 |
import cv2
|
3 |
-
import os
|
4 |
import numpy as np
|
|
|
|
|
5 |
from keras.models import load_model
|
6 |
from PIL import Image
|
7 |
-
import
|
8 |
from huggingface_hub import HfApi
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Constants
|
13 |
KNOWN_FACES_DIR = "known_faces" # Directory to save user images
|
14 |
DATABASE = "students.db" # SQLite database file to store student information
|
15 |
-
EMOTION_MODEL_FILE = "CNN_Model_acc_75.h5"
|
16 |
-
EMOTION_LABELS = ["Angry", "Disgust", "Fear", "Happy", "Sad", "Surprise", "Neutral"]
|
17 |
-
REPO_NAME = "face_and_emotion_detection"
|
18 |
-
REPO_ID = f"LovnishVerma/{REPO_NAME}"
|
19 |
|
20 |
-
# Ensure the
|
21 |
os.makedirs(KNOWN_FACES_DIR, exist_ok=True)
|
22 |
|
23 |
-
# Retrieve Hugging Face token from environment variable
|
24 |
-
hf_token = os.getenv("upload") #
|
25 |
if not hf_token:
|
26 |
-
|
27 |
-
st.stop()
|
28 |
|
29 |
# Initialize Hugging Face API
|
30 |
api = HfApi()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
try:
|
32 |
-
api.create_repo(repo_id=REPO_ID, repo_type=
|
33 |
st.success(f"Repository '{REPO_NAME}' is ready on Hugging Face!")
|
34 |
except Exception as e:
|
35 |
-
st.error(f"Error creating
|
36 |
|
37 |
-
# Load the emotion detection model
|
38 |
-
try:
|
39 |
-
emotion_model = load_model(EMOTION_MODEL_FILE)
|
40 |
-
except Exception as e:
|
41 |
-
st.error(f"Error loading emotion model: {e}")
|
42 |
-
st.stop()
|
43 |
|
44 |
-
# Database
|
45 |
def initialize_database():
|
46 |
-
"""
|
|
|
|
|
|
|
47 |
conn = sqlite3.connect(DATABASE)
|
48 |
cursor = conn.cursor()
|
49 |
cursor.execute("""
|
@@ -59,7 +65,15 @@ def initialize_database():
|
|
59 |
conn.close()
|
60 |
|
61 |
def save_to_database(name, roll_no, image_path):
|
62 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
conn = sqlite3.connect(DATABASE)
|
64 |
cursor = conn.cursor()
|
65 |
try:
|
@@ -75,17 +89,38 @@ def save_to_database(name, roll_no, image_path):
|
|
75 |
conn.close()
|
76 |
|
77 |
def save_image_to_hugging_face(image, name, roll_no):
|
78 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
filename = f"{name}_{roll_no}.jpg"
|
80 |
local_path = os.path.join(KNOWN_FACES_DIR, filename)
|
81 |
-
image.save(local_path)
|
82 |
|
|
|
|
|
|
|
|
|
83 |
try:
|
84 |
-
api.upload_file(
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
st.success(f"Image uploaded to Hugging Face: {filename}")
|
86 |
except Exception as e:
|
87 |
st.error(f"Error uploading image to Hugging Face: {e}")
|
88 |
-
|
89 |
return local_path
|
90 |
|
91 |
# Initialize the database when the app starts
|
@@ -98,22 +133,32 @@ st.title("Student Registration with Hugging Face Image Upload")
|
|
98 |
name = st.text_input("Enter your name")
|
99 |
roll_no = st.text_input("Enter your roll number")
|
100 |
|
101 |
-
# Choose input method for the image (
|
102 |
-
capture_mode = "
|
103 |
|
104 |
-
# Handle webcam capture
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
# Save data and process image on button click
|
108 |
if st.button("Register"):
|
109 |
if not name or not roll_no:
|
110 |
st.error("Please fill in both name and roll number.")
|
111 |
elif not picture:
|
112 |
-
st.error("Please capture an image
|
113 |
else:
|
114 |
try:
|
115 |
# Open the image based on capture mode
|
116 |
-
if picture:
|
|
|
|
|
117 |
image = Image.open(picture)
|
118 |
|
119 |
# Save the image locally and upload it to Hugging Face
|
@@ -136,81 +181,186 @@ if st.checkbox("Show registered students"):
|
|
136 |
st.write(f"**Name:** {name}, **Roll No:** {roll_no}, **Timestamp:** {timestamp}")
|
137 |
st.image(image_path, caption=f"{name} ({roll_no})", use_column_width=True)
|
138 |
|
139 |
-
# Initialize OpenCV's face detector (Haar Cascade)
|
140 |
-
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
141 |
|
142 |
-
#
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
-
#
|
146 |
-
|
147 |
-
faces = []
|
148 |
-
labels = []
|
149 |
-
label_encoder = LabelEncoder()
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
image = cv2.imread(image_path)
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
faces_detected = face_cascade.detectMultiScale(gray_image, 1.3, 5)
|
160 |
-
for (x, y, w, h) in faces_detected:
|
161 |
-
face = gray_image[y:y+h, x:x+w]
|
162 |
-
faces.append(face)
|
163 |
-
labels.append(filename.split('_')[0]) # Assuming name is in the filename
|
164 |
-
|
165 |
-
labels = label_encoder.fit_transform(labels)
|
166 |
-
face_recognizer.train(faces, np.array(labels))
|
167 |
-
st.success("Face recognizer trained successfully!")
|
168 |
|
169 |
-
|
|
|
|
|
|
|
|
|
170 |
|
171 |
-
#
|
172 |
-
|
173 |
-
# Convert the image to grayscale for face detection
|
174 |
-
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
175 |
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
-
# If faces are detected, predict emotions and recognize faces
|
180 |
for (x, y, w, h) in faces:
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
# Predict the emotion
|
188 |
-
emotion_prediction = emotion_model.predict(reshaped_face)
|
189 |
-
emotion_label = np.argmax(emotion_prediction)
|
190 |
-
|
191 |
-
# Recognize the face
|
192 |
-
label, confidence = face_recognizer.predict(face)
|
193 |
-
recognized_label = label_encoder.inverse_transform([label])[0]
|
194 |
-
|
195 |
-
return EMOTION_LABELS[emotion_label], recognized_label
|
196 |
-
|
197 |
-
return None, None
|
198 |
|
199 |
-
#
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
#
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import cv2
|
|
|
3 |
import numpy as np
|
4 |
+
import time
|
5 |
+
import os
|
6 |
from keras.models import load_model
|
7 |
from PIL import Image
|
8 |
+
import tempfile
|
9 |
from huggingface_hub import HfApi
|
10 |
+
|
11 |
+
# Larger title
|
12 |
+
st.markdown("<h1 style='text-align: center;'>Emotion Detection with Face Recognition</h1>", unsafe_allow_html=True)
|
13 |
+
|
14 |
+
# Smaller subtitle
|
15 |
+
st.markdown("<h3 style='text-align: center;'>angry, fear, happy, neutral, sad, surprise</h3>", unsafe_allow_html=True)
|
16 |
+
|
17 |
+
start = time.time()
|
18 |
|
19 |
# Constants
|
20 |
KNOWN_FACES_DIR = "known_faces" # Directory to save user images
|
21 |
DATABASE = "students.db" # SQLite database file to store student information
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
# Ensure the directory exists
|
24 |
os.makedirs(KNOWN_FACES_DIR, exist_ok=True)
|
25 |
|
26 |
+
# Retrieve the Hugging Face token from environment variable
|
27 |
+
hf_token = os.getenv("upload") # The key must match the secret name set in Hugging Face
|
28 |
if not hf_token:
|
29 |
+
raise ValueError("Hugging Face token not found. Ensure it's set as a secret in the Hugging Face Space.")
|
|
|
30 |
|
31 |
# Initialize Hugging Face API
|
32 |
api = HfApi()
|
33 |
+
|
34 |
+
# Repository Details on Hugging Face
|
35 |
+
REPO_NAME = "face_and_emotion_detection" # Replace with your Hugging Face repository name
|
36 |
+
REPO_ID = "LovnishVerma/" + REPO_NAME # Replace "LovnishVerma" with your Hugging Face username
|
37 |
+
REPO_TYPE = "space" # 'space' type for Streamlit-based projects
|
38 |
+
|
39 |
+
# Ensure the repository exists or create it
|
40 |
try:
|
41 |
+
api.create_repo(repo_id=REPO_ID, repo_type=REPO_TYPE, space_sdk="streamlit", token=hf_token, exist_ok=True)
|
42 |
st.success(f"Repository '{REPO_NAME}' is ready on Hugging Face!")
|
43 |
except Exception as e:
|
44 |
+
st.error(f"Error creating repository: {e}")
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
# Database setup
|
48 |
def initialize_database():
|
49 |
+
"""
|
50 |
+
Initializes the SQLite database by creating a table to store student data
|
51 |
+
such as name, roll number, image path, and registration timestamp.
|
52 |
+
"""
|
53 |
conn = sqlite3.connect(DATABASE)
|
54 |
cursor = conn.cursor()
|
55 |
cursor.execute("""
|
|
|
65 |
conn.close()
|
66 |
|
67 |
def save_to_database(name, roll_no, image_path):
|
68 |
+
"""
|
69 |
+
Saves the student's information (name, roll number, image path) to the SQLite database.
|
70 |
+
Ensures roll number is unique.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
name (str): The name of the student.
|
74 |
+
roll_no (str): The roll number of the student.
|
75 |
+
image_path (str): Path to the stored image of the student.
|
76 |
+
"""
|
77 |
conn = sqlite3.connect(DATABASE)
|
78 |
cursor = conn.cursor()
|
79 |
try:
|
|
|
89 |
conn.close()
|
90 |
|
91 |
def save_image_to_hugging_face(image, name, roll_no):
|
92 |
+
"""
|
93 |
+
Saves the captured image locally in the 'known_faces' directory and uploads it to Hugging Face.
|
94 |
+
The image is renamed using the format 'UserName_RollNo.jpg'.
|
95 |
+
|
96 |
+
Args:
|
97 |
+
image (PIL Image): The image object captured by the user.
|
98 |
+
name (str): The name of the student.
|
99 |
+
roll_no (str): The roll number of the student.
|
100 |
+
|
101 |
+
Returns:
|
102 |
+
str: The local path where the image is saved.
|
103 |
+
"""
|
104 |
+
# Rename the image using the format 'UserName_RollNo.jpg'
|
105 |
filename = f"{name}_{roll_no}.jpg"
|
106 |
local_path = os.path.join(KNOWN_FACES_DIR, filename)
|
|
|
107 |
|
108 |
+
# Save the image locally to the known_faces directory
|
109 |
+
image.save(local_path)
|
110 |
+
|
111 |
+
# Try uploading the image to Hugging Face
|
112 |
try:
|
113 |
+
api.upload_file(
|
114 |
+
path_or_fileobj=local_path,
|
115 |
+
path_in_repo=filename,
|
116 |
+
repo_id=REPO_ID,
|
117 |
+
repo_type=REPO_TYPE,
|
118 |
+
token=hf_token # Pass the Hugging Face token directly
|
119 |
+
)
|
120 |
st.success(f"Image uploaded to Hugging Face: {filename}")
|
121 |
except Exception as e:
|
122 |
st.error(f"Error uploading image to Hugging Face: {e}")
|
123 |
+
|
124 |
return local_path
|
125 |
|
126 |
# Initialize the database when the app starts
|
|
|
133 |
name = st.text_input("Enter your name")
|
134 |
roll_no = st.text_input("Enter your roll number")
|
135 |
|
136 |
+
# Choose input method for the image (webcam or file upload)
|
137 |
+
capture_mode = st.radio("Choose an option to upload your image", ["Use Webcam", "Upload File"])
|
138 |
|
139 |
+
# Handle webcam capture or file upload
|
140 |
+
if capture_mode == "Use Webcam":
|
141 |
+
try:
|
142 |
+
picture = st.camera_input("Take a picture") # Capture image using webcam
|
143 |
+
except Exception as e:
|
144 |
+
st.error(f"Error accessing webcam: {e}")
|
145 |
+
picture = None
|
146 |
+
|
147 |
+
elif capture_mode == "Upload File":
|
148 |
+
picture = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) # Upload image from file system
|
149 |
|
150 |
# Save data and process image on button click
|
151 |
if st.button("Register"):
|
152 |
if not name or not roll_no:
|
153 |
st.error("Please fill in both name and roll number.")
|
154 |
elif not picture:
|
155 |
+
st.error("Please upload or capture an image.")
|
156 |
else:
|
157 |
try:
|
158 |
# Open the image based on capture mode
|
159 |
+
if capture_mode == "Use Webcam" and picture:
|
160 |
+
image = Image.open(picture)
|
161 |
+
elif capture_mode == "Upload File" and picture:
|
162 |
image = Image.open(picture)
|
163 |
|
164 |
# Save the image locally and upload it to Hugging Face
|
|
|
181 |
st.write(f"**Name:** {name}, **Roll No:** {roll_no}, **Timestamp:** {timestamp}")
|
182 |
st.image(image_path, caption=f"{name} ({roll_no})", use_column_width=True)
|
183 |
|
|
|
|
|
184 |
|
185 |
+
# Constants
|
186 |
+
DB_FILE = "students.db"
|
187 |
+
KNOWN_FACES_DIR = "known_faces"
|
188 |
+
EMOTION_MODEL_FILE = "CNN_Model_acc_75.h5"
|
189 |
+
EMOTION_LABELS = ["Angry", "Disgust", "Fear", "Happy", "Sad", "Surprise", "Neutral"]
|
190 |
+
|
191 |
+
# Hugging Face Repository Details
|
192 |
+
REPO_NAME = "face_and_emotion_detection"
|
193 |
+
REPO_ID = f"LovnishVerma/{REPO_NAME}" # Replace with your Hugging Face username and repository name
|
194 |
|
195 |
+
# Ensure Directories
|
196 |
+
os.makedirs(KNOWN_FACES_DIR, exist_ok=True)
|
|
|
|
|
|
|
197 |
|
198 |
+
# Load Hugging Face Token
|
199 |
+
hf_token = os.getenv("upload")
|
200 |
+
if not hf_token:
|
201 |
+
st.error("Hugging Face token not found. Please set the environment variable.")
|
202 |
+
|
203 |
+
# Initialize Hugging Face API
|
204 |
+
api = HfApi()
|
205 |
+
try:
|
206 |
+
api.create_repo(repo_id=REPO_ID, repo_type="space", space_sdk="streamlit", token=hf_token, exist_ok=True)
|
207 |
+
st.success(f"Repository '{REPO_NAME}' is ready on Hugging Face!")
|
208 |
+
except Exception as e:
|
209 |
+
st.error(f"Error creating Hugging Face repository: {e}")
|
210 |
+
|
211 |
+
# Load Emotion Model
|
212 |
+
try:
|
213 |
+
emotion_model = load_model(EMOTION_MODEL_FILE)
|
214 |
+
except Exception as e:
|
215 |
+
st.error(f"Error loading emotion model: {e}")
|
216 |
+
|
217 |
+
# Database Functions
|
218 |
+
def create_table():
|
219 |
+
with sqlite3.connect(DB_FILE) as conn:
|
220 |
+
conn.execute("""CREATE TABLE IF NOT EXISTS students (
|
221 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
222 |
+
name TEXT NOT NULL,
|
223 |
+
roll_number TEXT NOT NULL UNIQUE,
|
224 |
+
image_path TEXT NOT NULL)""")
|
225 |
+
conn.commit()
|
226 |
+
|
227 |
+
def insert_student(name, roll_number, image_path):
|
228 |
+
try:
|
229 |
+
with sqlite3.connect(DB_FILE) as conn:
|
230 |
+
conn.execute("INSERT INTO students (name, roll_number, image_path) VALUES (?, ?, ?)",
|
231 |
+
(name, roll_number, image_path))
|
232 |
+
conn.commit()
|
233 |
+
except sqlite3.IntegrityError:
|
234 |
+
st.warning("Roll number already exists!")
|
235 |
+
|
236 |
+
def get_all_students():
|
237 |
+
with sqlite3.connect(DB_FILE) as conn:
|
238 |
+
cursor = conn.execute("SELECT * FROM students")
|
239 |
+
return cursor.fetchall()
|
240 |
+
|
241 |
+
# Load the emotion model
|
242 |
+
@st.cache_resource
|
243 |
+
def load_emotion_model():
|
244 |
+
model = load_model('CNN_Model_acc_75.h5') # Ensure this file is in your Space
|
245 |
+
return model
|
246 |
+
|
247 |
+
model = load_emotion_model()
|
248 |
+
print("time taken to load model: ", time.time() - start)
|
249 |
+
|
250 |
+
# Emotion labels
|
251 |
+
emotion_labels = ['angry', 'fear', 'happy', 'neutral', 'sad', 'surprise']
|
252 |
+
|
253 |
+
# Load known faces (from images in a folder)
|
254 |
+
known_faces = []
|
255 |
+
known_names = []
|
256 |
+
face_recognizer = cv2.face.LBPHFaceRecognizer_create()
|
257 |
+
|
258 |
+
def load_known_faces():
|
259 |
+
folder_path = "known_faces" # Place your folder with known faces here
|
260 |
+
for image_name in os.listdir(folder_path):
|
261 |
+
if image_name.endswith(('.jpg', '.jpeg', '.png')):
|
262 |
+
image_path = os.path.join(folder_path, image_name)
|
263 |
image = cv2.imread(image_path)
|
264 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
265 |
+
# Detect face in the image
|
266 |
+
faces = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml').detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
|
268 |
+
for (x, y, w, h) in faces:
|
269 |
+
roi_gray = gray[y:y+h, x:x+w]
|
270 |
+
# We only need the face, so we crop it and store it for training
|
271 |
+
known_faces.append(roi_gray)
|
272 |
+
known_names.append(image_name.split('.')[0]) # Assuming file name is the person's name
|
273 |
|
274 |
+
# Train the recognizer with the known faces
|
275 |
+
face_recognizer.train(known_faces, np.array([i for i in range(len(known_faces))]))
|
|
|
|
|
276 |
|
277 |
+
load_known_faces()
|
278 |
+
|
279 |
+
# Face detection using OpenCV
|
280 |
+
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
281 |
+
img_shape = 48
|
282 |
+
|
283 |
+
def process_frame(frame):
|
284 |
+
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
285 |
+
faces = face_cascade.detectMultiScale(gray_frame, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
|
286 |
+
|
287 |
+
result_text = "" # Initialize the result text for display
|
288 |
|
|
|
289 |
for (x, y, w, h) in faces:
|
290 |
+
roi_gray = gray_frame[y:y+h, x:x+w]
|
291 |
+
roi_color = frame[y:y+h, x:x+w]
|
292 |
+
face_roi = cv2.resize(roi_color, (img_shape, img_shape)) # Resize to 48x48
|
293 |
+
face_roi = cv2.cvtColor(face_roi, cv2.COLOR_BGR2RGB) # Convert to RGB (3 channels)
|
294 |
+
face_roi = np.expand_dims(face_roi, axis=0) # Add batch dimension
|
295 |
+
face_roi = face_roi / 255.0 # Normalize the image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
296 |
|
297 |
+
# Emotion detection
|
298 |
+
predictions = model.predict(face_roi)
|
299 |
+
emotion = emotion_labels[np.argmax(predictions[0])]
|
300 |
+
|
301 |
+
# Face recognition using LBPH
|
302 |
+
label, confidence = face_recognizer.predict(roi_gray)
|
303 |
+
name = "Unknown"
|
304 |
+
if confidence < 100:
|
305 |
+
name = known_names[label]
|
306 |
+
|
307 |
+
# Format the result text as "Name is feeling Emotion"
|
308 |
+
result_text = f"{name} is feeling {emotion}"
|
309 |
+
|
310 |
+
# Draw bounding box and label on the frame
|
311 |
+
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
|
312 |
+
cv2.putText(frame, result_text, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
313 |
+
|
314 |
+
return frame, result_text
|
315 |
+
|
316 |
+
# Video feed
|
317 |
+
def video_feed(video_source):
|
318 |
+
frame_placeholder = st.empty() # This placeholder will be used to replace frames in-place
|
319 |
+
text_placeholder = st.empty() # This placeholder will display the result text
|
320 |
+
|
321 |
+
while True:
|
322 |
+
ret, frame = video_source.read()
|
323 |
+
if not ret:
|
324 |
+
break
|
325 |
+
|
326 |
+
frame, result_text = process_frame(frame)
|
327 |
+
|
328 |
+
# Display the frame in the placeholder
|
329 |
+
frame_placeholder.image(frame, channels="BGR", use_column_width=True)
|
330 |
+
|
331 |
+
# Display the result text in the text placeholder
|
332 |
+
text_placeholder.markdown(f"<h3 style='text-align: center;'>{result_text}</h3>", unsafe_allow_html=True)
|
333 |
+
|
334 |
+
# Sidebar for video or image upload
|
335 |
+
upload_choice = st.sidebar.radio("Choose input source", ["Upload Image", "Upload Video", "Camera"])
|
336 |
+
|
337 |
+
if upload_choice == "Camera":
|
338 |
+
# Use Streamlit's built-in camera input widget for capturing images from the webcam
|
339 |
+
image = st.camera_input("Take a picture")
|
340 |
+
|
341 |
+
if image is not None:
|
342 |
+
# Convert the image to a numpy array
|
343 |
+
frame = np.array(Image.open(image))
|
344 |
+
frame, result_text = process_frame(frame)
|
345 |
+
st.image(frame, caption='Processed Image', use_column_width=True)
|
346 |
+
st.markdown(f"<h3 style='text-align: center;'>{result_text}</h3>", unsafe_allow_html=True)
|
347 |
+
|
348 |
+
elif upload_choice == "Upload Image":
|
349 |
+
uploaded_image = st.file_uploader("Upload Image", type=["png", "jpg", "jpeg", "gif"])
|
350 |
+
if uploaded_image:
|
351 |
+
image = Image.open(uploaded_image)
|
352 |
+
frame = np.array(image)
|
353 |
+
frame, result_text = process_frame(frame)
|
354 |
+
st.image(frame, caption='Processed Image', use_column_width=True)
|
355 |
+
st.markdown(f"<h3 style='text-align: center;'>{result_text}</h3>", unsafe_allow_html=True)
|
356 |
+
|
357 |
+
elif upload_choice == "Upload Video":
|
358 |
+
uploaded_video = st.file_uploader("Upload Video", type=["mp4", "mov", "avi", "mkv", "webm"])
|
359 |
+
if uploaded_video:
|
360 |
+
# Temporarily save the video to disk
|
361 |
+
with tempfile.NamedTemporaryFile(delete=False) as tfile:
|
362 |
+
tfile.write(uploaded_video.read())
|
363 |
+
video_source = cv2.VideoCapture(tfile.name)
|
364 |
+
video_feed(video_source)
|
365 |
+
|
366 |
+
st.sidebar.write("Emotion Labels: Angry, Fear, Happy, Neutral, Sad, Surprise")
|