Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,7 @@ from PIL import Image
|
|
7 |
import sqlite3
|
8 |
from huggingface_hub import HfApi
|
9 |
from datetime import datetime
|
|
|
10 |
|
11 |
# Constants
|
12 |
KNOWN_FACES_DIR = "known_faces" # Directory to save user images
|
@@ -137,14 +138,18 @@ if st.checkbox("Show registered students"):
|
|
137 |
|
138 |
# Face and Emotion Detection Function
|
139 |
def detect_faces_and_emotions(image):
|
140 |
-
|
|
|
|
|
|
|
141 |
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
142 |
-
faces = face_cascade.detectMultiScale(
|
143 |
-
|
|
|
144 |
for (x, y, w, h) in faces:
|
145 |
-
face =
|
146 |
resized_face = cv2.resize(face, (48, 48)) # Resize face to 48x48
|
147 |
-
rgb_face = cv2.cvtColor(resized_face, cv2.
|
148 |
normalized_face = rgb_face / 255.0
|
149 |
reshaped_face = np.reshape(normalized_face, (1, 48, 48, 3))
|
150 |
|
@@ -152,6 +157,7 @@ def detect_faces_and_emotions(image):
|
|
152 |
emotion_prediction = emotion_model.predict(reshaped_face)
|
153 |
emotion_label = np.argmax(emotion_prediction)
|
154 |
return EMOTION_LABELS[emotion_label]
|
|
|
155 |
return None
|
156 |
|
157 |
# UI for Emotion Detection (Only using webcam now)
|
@@ -163,6 +169,8 @@ if st.sidebar.selectbox("Menu", ["Register Student", "Face Recognition and Emoti
|
|
163 |
if camera_image:
|
164 |
img = Image.open(camera_image)
|
165 |
img_array = np.array(img)
|
|
|
|
|
166 |
emotion_label = detect_faces_and_emotions(img_array)
|
167 |
if emotion_label:
|
168 |
st.success(f"Emotion Detected: {emotion_label}")
|
|
|
7 |
import sqlite3
|
8 |
from huggingface_hub import HfApi
|
9 |
from datetime import datetime
|
10 |
+
import face_recognition
|
11 |
|
12 |
# Constants
|
13 |
KNOWN_FACES_DIR = "known_faces" # Directory to save user images
|
|
|
138 |
|
139 |
# Face and Emotion Detection Function
|
140 |
def detect_faces_and_emotions(image):
|
141 |
+
# Convert the image to RGB (as OpenCV works with BGR by default)
|
142 |
+
rgb_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
143 |
+
|
144 |
+
# Detect faces using OpenCV's Haar Cascade
|
145 |
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
146 |
+
faces = face_cascade.detectMultiScale(rgb_image, scaleFactor=1.3, minNeighbors=5)
|
147 |
+
|
148 |
+
# If faces are detected, predict emotions
|
149 |
for (x, y, w, h) in faces:
|
150 |
+
face = rgb_image[y:y+h, x:x+w]
|
151 |
resized_face = cv2.resize(face, (48, 48)) # Resize face to 48x48
|
152 |
+
rgb_face = cv2.cvtColor(resized_face, cv2.COLOR_BGR2RGB)
|
153 |
normalized_face = rgb_face / 255.0
|
154 |
reshaped_face = np.reshape(normalized_face, (1, 48, 48, 3))
|
155 |
|
|
|
157 |
emotion_prediction = emotion_model.predict(reshaped_face)
|
158 |
emotion_label = np.argmax(emotion_prediction)
|
159 |
return EMOTION_LABELS[emotion_label]
|
160 |
+
|
161 |
return None
|
162 |
|
163 |
# UI for Emotion Detection (Only using webcam now)
|
|
|
169 |
if camera_image:
|
170 |
img = Image.open(camera_image)
|
171 |
img_array = np.array(img)
|
172 |
+
|
173 |
+
# Detect emotion in the captured image
|
174 |
emotion_label = detect_faces_and_emotions(img_array)
|
175 |
if emotion_label:
|
176 |
st.success(f"Emotion Detected: {emotion_label}")
|