File size: 680 Bytes
17822e0
 
 
85c04da
 
17822e0
85c04da
 
 
 
 
 
17822e0
85c04da
17822e0
85c04da
17822e0
 
 
85c04da
 
17822e0
 
85c04da
17822e0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import gradio as gr
from transformers import pipeline

# Load pre-trained sentiment analysis model
classifier = pipeline('sentiment-analysis')

# Define the sentiment analysis function
def analyze_sentiment(text):
    result = classifier(text)
    sentiment = result[0]['label']
    confidence = result[0]['score']
    return f"Sentiment: {sentiment}, Confidence: {confidence:.4f}"

# Create Gradio interface
iface = gr.Interface(
    fn=analyze_sentiment,
    inputs=gr.Textbox(),
    outputs=gr.Textbox(),
    live=True,
    title="Sentiment Analysis App",
    description="Enter a sentence, and the model will predict its sentiment.",
)

# Launch the Gradio app
iface.launch()