Lrosado commited on
Commit
7304cc3
·
verified ·
1 Parent(s): 6e3fe93

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -7
app.py CHANGED
@@ -1,4 +1,3 @@
1
-
2
  ## Setup
3
  # Import the necessary Libraries
4
  import os
@@ -7,13 +6,9 @@ import json
7
  import gradio as gr
8
 
9
  from openai import OpenAI
10
- #from langchain_community.embeddings.sentence_transformer import SentenceTransformerEmbeddings
11
- #from langchain_huggingface import HuggingFaceEmbeddings
12
- #from langchain.embeddings import OpenAIEmbeddings
13
  from langchain_community.embeddings import OpenAIEmbeddings
14
  from langchain_openai import OpenAIEmbeddings
15
  from langchain_community.vectorstores import Chroma
16
- #from langchain.vectorstores import Chroma
17
  from langchain_chroma import Chroma
18
  from huggingface_hub import CommitScheduler
19
  from pathlib import Path
@@ -29,10 +24,9 @@ client = OpenAI(
29
  )
30
 
31
  # Define the embedding model and the vectorstore
32
- #embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-small')
33
- #embedding_model = HuggingFaceEmbeddings(model_name='thenlper/gte-small')
34
  embedding_model = OpenAIEmbeddings(model="text-embedding-ada-002", openai_api_key=openai_api_key)
35
  model_name = 'gpt-4o-mini'
 
36
  #Load the persisted vectorDB
37
  collection_name = '10k_embeddings'
38
 
 
 
1
  ## Setup
2
  # Import the necessary Libraries
3
  import os
 
6
  import gradio as gr
7
 
8
  from openai import OpenAI
 
 
 
9
  from langchain_community.embeddings import OpenAIEmbeddings
10
  from langchain_openai import OpenAIEmbeddings
11
  from langchain_community.vectorstores import Chroma
 
12
  from langchain_chroma import Chroma
13
  from huggingface_hub import CommitScheduler
14
  from pathlib import Path
 
24
  )
25
 
26
  # Define the embedding model and the vectorstore
 
 
27
  embedding_model = OpenAIEmbeddings(model="text-embedding-ada-002", openai_api_key=openai_api_key)
28
  model_name = 'gpt-4o-mini'
29
+
30
  #Load the persisted vectorDB
31
  collection_name = '10k_embeddings'
32