dsla_prototype / train.py
Lrosado's picture
Upload 3 files
11cc2ca verified
import sklearn
import joblib
import pandas as pd
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.compose import make_column_transformer
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline
from sklearn.pipeline import make_pipeline
from sklearn.model_selection import train_test_split, RandomizedSearchCV
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report
data_df = pd.read_csv('scrubbed_itsm_export.csv')
target = 'Networkdays'
numerical_features = ['Priority','SLA Breached']
categorical_features = ['SNOW', 'Assigned to', 'CI','Symptom','Symptom Detail']
print("Creating data subsets")
X = data_df.drop('Networkdays',axis=1)
y = data_df['Networkdays']
Xtrain, Xtest, ytrain, ytest = train_test_split(
X, y,
test_size=0.2,
random_state=42
)
numerical_pipeline = Pipeline([
('imputer', SimpleImputer(strategy='median')),
('scaler', StandardScaler())
])
categorical_pipeline = Pipeline([
('imputer', SimpleImputer(strategy='most_frequent')),
('onehot', OneHotEncoder(handle_unknown='ignore'))
])
preprocessor = make_column_transformer(
(numerical_pipeline, numerical_features),
(categorical_pipeline, categorical_features)
)
model_logistic_regression = LogisticRegression(n_jobs=-1)
print("Estimating Best Model Pipeline")
model_pipeline = make_pipeline(
preprocessor,
model_logistic_regression
)
param_distribution = {
"logisticregression__C": [0.001, 0.01, 0.1, 0.5, 1, 5, 10]
}
rand_search_cv = RandomizedSearchCV(
model_pipeline,
param_distribution,
n_iter=3,
cv=3,
random_state=42
)
rand_search_cv.fit(Xtrain, ytrain)
print("Logging Metrics")
print(f"Accuracy: {rand_search_cv.best_score_}")
print("Serializing Model")
saved_model_path = "model.joblib"
joblib.dump(rand_search_cv.best_estimator_, saved_model_path)