import sklearn import joblib import pandas as pd from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.compose import make_column_transformer from sklearn.impute import SimpleImputer from sklearn.pipeline import Pipeline from sklearn.pipeline import make_pipeline from sklearn.model_selection import train_test_split, RandomizedSearchCV from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, classification_report data_df = pd.read_csv('scrubbed_itsm_export.csv') target = 'Networkdays' numerical_features = ['Priority','SLA Breached'] categorical_features = ['SNOW', 'Assigned to', 'CI','Symptom','Symptom Detail'] print("Creating data subsets") X = data_df.drop('Networkdays',axis=1) y = data_df['Networkdays'] Xtrain, Xtest, ytrain, ytest = train_test_split( X, y, test_size=0.2, random_state=42 ) numerical_pipeline = Pipeline([ ('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler()) ]) categorical_pipeline = Pipeline([ ('imputer', SimpleImputer(strategy='most_frequent')), ('onehot', OneHotEncoder(handle_unknown='ignore')) ]) preprocessor = make_column_transformer( (numerical_pipeline, numerical_features), (categorical_pipeline, categorical_features) ) model_logistic_regression = LogisticRegression(n_jobs=-1) print("Estimating Best Model Pipeline") model_pipeline = make_pipeline( preprocessor, model_logistic_regression ) param_distribution = { "logisticregression__C": [0.001, 0.01, 0.1, 0.5, 1, 5, 10] } rand_search_cv = RandomizedSearchCV( model_pipeline, param_distribution, n_iter=3, cv=3, random_state=42 ) rand_search_cv.fit(Xtrain, ytrain) print("Logging Metrics") print(f"Accuracy: {rand_search_cv.best_score_}") print("Serializing Model") saved_model_path = "model.joblib" joblib.dump(rand_search_cv.best_estimator_, saved_model_path)