# -*- coding: utf-8 -*- """app.ipynb Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1PufyNXKkKJpa1fHdbC5xMAHNAkAcB3UC """ import os import uuid import joblib import json import gradio as gr import pandas as pd from huggingface_hub import CommitScheduler from pathlib import Path log_file = Path("logs/") / f"data_{uuid.uuid4()}.json" log_folder = log_file.parent scheduler = CommitScheduler( repo_id="dsla_predictor", repo_type="dataset", folder_path=log_folder, path_in_repo="data", every=2 ) dsla_predictor = joblib.load('model.joblib') snow_input = gr.Number(label='SNOW Instance') priority_input = gr.Number(label='Priority 1-5') sla_breached_input = gr.Number(label='SLA Breached 1=Yes, 0=No') ci_input = gr.Dropdown( ['App1','App10','App11','App12','App13','App14','App15','App16','App17','App18','App19','App2','App20','App21','App22','App3','App4','App5','App6','App7','App8','App9','OTHER'], label='CI' ) error_input = gr.Dropdown( 'Access','Availability','Connectivity','Data','Error','Failure','File Transfer','Functionality','Info Security','Latency','Performance','Question','Request','Test', label='Error' ) error_symptom_input = gr.Dropdown( ['Account Issue','Application Functionality','Authentication Service Issue','Batch Job','BC Testing','Business Process/Event','Business Process/Rule','Client Side Error','Data Fix','External Mailing','General','Hardware','How To','Human Error','Impacting Normal Operations','Inaccurate Data','Inaccurate Data - Back Office','Inaccurate Data - Client Facing','Inbound Feed Delay','Inbound Feed Failure','Intermittent','Intermittent (Client)','Intermittent (PRU)','Investigation'], label='Error Symptom' ) networkdays_input = gr.Number(label='Net Work Days') model_output = gr.Label(label="dSLA Prediction") def predict_dsla(snow, priority,sla_breached,ci,error,error_symptom,networkdays): sample = { 'SNOW': snow, 'Priority': priority, 'SLA Breached': sla_breached, 'CI': ci, 'Error': error, 'Error Symptom': error_symptom, 'Network Days': networkdays } data_point = pd.DataFrame([sample]) prediction = dsla_predictor.predict(data_point).tolist() with scheduler.lock: with log_file.open("a") as f: f.write(json.dumps( { 'SNOW': snow, 'Priority': priority, 'SLA Breached': sla_breached, 'CI': ci, 'Error': error, 'Error Symptom': error_symptom, 'Network Days': networkdays, 'prediction': prediction[0] } )) f.write("\n") return prediction[0] demo = gr.Interface( fn=predict_dsla, inputs=[snow_input, priority_input, sla_breached_input, ci_input, error_input, error_symptom_input, networkdays_input], outputs=model_output, title="Dynamic SLA Predictor", description="This API allows you to predict the Dynamic SLA for an incident", allow_flagging="auto", concurrency_limit=8 ) demo.queue() demo.launch(share=False)