Spaces:
Running
Running
Lucasstranger1
commited on
Commit
•
e436a2e
1
Parent(s):
4a17310
update
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import os
|
2 |
-
import streamlit as st
|
3 |
import requests
|
|
|
4 |
from transformers import pipeline
|
5 |
from PIL import Image
|
6 |
from dotenv import load_dotenv
|
@@ -9,14 +9,13 @@ from dotenv import load_dotenv
|
|
9 |
load_dotenv()
|
10 |
|
11 |
# Set up the Hugging Face API URL and your API key
|
|
|
12 |
headers = {"Authorization": f"Bearer {os.getenv('HUGGINGFACE_API_KEY')}"}
|
13 |
|
14 |
# Function to query the Hugging Face model for facial expression
|
15 |
def query(filename):
|
16 |
with open(filename, "rb") as f:
|
17 |
data = f.read()
|
18 |
-
# Use the facial expression model
|
19 |
-
API_URL = "https://api-inference.huggingface.co/models/microsoft/face-expression-recognition"
|
20 |
response = requests.post(API_URL, headers=headers, data=data)
|
21 |
|
22 |
if response.status_code == 200:
|
@@ -28,7 +27,7 @@ def query(filename):
|
|
28 |
# Function to generate a joke or uplifting text based on the mood
|
29 |
def generate_text_based_on_mood(emotion):
|
30 |
try:
|
31 |
-
# Use GPT-Neo model
|
32 |
generator = pipeline('text-generation', model='EleutherAI/gpt-neo-125M')
|
33 |
prompt = f"Tell a joke that would cheer someone who is feeling {emotion}."
|
34 |
response = generator(prompt, max_length=50, num_return_sequences=1)
|
@@ -37,6 +36,14 @@ def generate_text_based_on_mood(emotion):
|
|
37 |
st.error(f"Error generating text: {e}")
|
38 |
return "Sorry, I couldn't come up with a joke at this moment."
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
# Streamlit UI
|
41 |
st.title("Facial Expression Mood Detector")
|
42 |
st.write("Upload an image of a face to detect mood and receive uplifting messages or jokes.")
|
@@ -56,6 +63,7 @@ if uploaded_file is not None:
|
|
56 |
# Detect facial expression
|
57 |
expression_output = query("uploaded_image.jpg")
|
58 |
if expression_output:
|
|
|
59 |
emotion = expression_output[0]['label'] # Adjust based on response structure
|
60 |
st.write(f"Detected emotion: {emotion}")
|
61 |
|
@@ -63,3 +71,9 @@ if uploaded_file is not None:
|
|
63 |
joke = generate_text_based_on_mood(emotion)
|
64 |
st.write("Here's something to cheer you up:")
|
65 |
st.write(joke)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
|
|
2 |
import requests
|
3 |
+
import streamlit as st
|
4 |
from transformers import pipeline
|
5 |
from PIL import Image
|
6 |
from dotenv import load_dotenv
|
|
|
9 |
load_dotenv()
|
10 |
|
11 |
# Set up the Hugging Face API URL and your API key
|
12 |
+
API_URL = "https://api-inference.huggingface.co/models/trpakov/vit-face-expression"
|
13 |
headers = {"Authorization": f"Bearer {os.getenv('HUGGINGFACE_API_KEY')}"}
|
14 |
|
15 |
# Function to query the Hugging Face model for facial expression
|
16 |
def query(filename):
|
17 |
with open(filename, "rb") as f:
|
18 |
data = f.read()
|
|
|
|
|
19 |
response = requests.post(API_URL, headers=headers, data=data)
|
20 |
|
21 |
if response.status_code == 200:
|
|
|
27 |
# Function to generate a joke or uplifting text based on the mood
|
28 |
def generate_text_based_on_mood(emotion):
|
29 |
try:
|
30 |
+
# Use GPT-Neo model for text generation
|
31 |
generator = pipeline('text-generation', model='EleutherAI/gpt-neo-125M')
|
32 |
prompt = f"Tell a joke that would cheer someone who is feeling {emotion}."
|
33 |
response = generator(prompt, max_length=50, num_return_sequences=1)
|
|
|
36 |
st.error(f"Error generating text: {e}")
|
37 |
return "Sorry, I couldn't come up with a joke at this moment."
|
38 |
|
39 |
+
# Function to convert text to speech using gTTS
|
40 |
+
def text_to_speech(text):
|
41 |
+
from gtts import gTTS
|
42 |
+
tts = gTTS(text, lang='en')
|
43 |
+
audio_file = "output.mp3"
|
44 |
+
tts.save(audio_file) # Save the audio file
|
45 |
+
return audio_file
|
46 |
+
|
47 |
# Streamlit UI
|
48 |
st.title("Facial Expression Mood Detector")
|
49 |
st.write("Upload an image of a face to detect mood and receive uplifting messages or jokes.")
|
|
|
63 |
# Detect facial expression
|
64 |
expression_output = query("uploaded_image.jpg")
|
65 |
if expression_output:
|
66 |
+
# Assuming the response has a 'label' field with the detected emotion
|
67 |
emotion = expression_output[0]['label'] # Adjust based on response structure
|
68 |
st.write(f"Detected emotion: {emotion}")
|
69 |
|
|
|
71 |
joke = generate_text_based_on_mood(emotion)
|
72 |
st.write("Here's something to cheer you up:")
|
73 |
st.write(joke)
|
74 |
+
|
75 |
+
# Convert the generated joke to audio
|
76 |
+
audio_file = text_to_speech(joke)
|
77 |
+
|
78 |
+
# Provide an audio player in the Streamlit app
|
79 |
+
st.audio(audio_file) # Streamlit will handle playback
|