File size: 8,075 Bytes
947c3f7
806e7bf
 
 
b85b4f5
 
 
806e7bf
 
b85b4f5
 
806e7bf
b85b4f5
947c3f7
4f2c8ae
947c3f7
806e7bf
 
 
7b9ccbc
 
806e7bf
 
7b9ccbc
 
806e7bf
 
 
 
b85b4f5
 
 
 
 
 
 
 
 
 
 
 
806e7bf
 
b85b4f5
 
 
 
 
 
 
 
 
 
 
806e7bf
 
b85b4f5
806e7bf
 
b85b4f5
806e7bf
 
 
 
 
b85b4f5
806e7bf
 
 
b85b4f5
806e7bf
 
 
2e3e738
b85b4f5
2e3e738
 
 
 
 
 
 
 
 
 
 
b85b4f5
 
 
 
 
 
 
 
806e7bf
b85b4f5
 
 
806e7bf
b85b4f5
 
 
 
 
 
 
 
 
 
806e7bf
b85b4f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
806e7bf
 
 
 
 
 
 
 
b85b4f5
806e7bf
 
 
 
b85b4f5
806e7bf
b85b4f5
 
 
 
 
 
 
 
 
806e7bf
b85b4f5
 
806e7bf
 
 
c2f4356
b85b4f5
 
 
 
 
 
 
 
806e7bf
 
b85b4f5
 
806e7bf
b85b4f5
806e7bf
 
 
 
947c3f7
 
806e7bf
947c3f7
 
 
 
 
 
806e7bf
 
947c3f7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import gradio as gr
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_community.llms import HuggingFaceEndpoint
import fitz  # PyMuPDF
import pytesseract
from PIL import Image
import io
import re
import numpy as np
import boto3
from typing import List
from sentence_transformers import SentenceTransformer
from langchain_community.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import SentenceTransformerEmbeddings
import os

# AWS access credentials
access_key = os.getenv("access_key")
secret_key = os.getenv("secret_key")

# S3 bucket details
bucket_name = os.getenv("bucket_name")
prefix = os.getenv("prefix")

HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")

def extract_text_from_pdf(pdf_content):
    """Extract text from PDF content using OCR."""
    try:
        doc = fitz.open(stream=pdf_content, filetype="pdf")
        text = ""
        for page in doc:
            pix = page.get_pixmap()
            img = Image.open(io.BytesIO(pix.tobytes()))
            text += pytesseract.image_to_string(img)
        return text
    except Exception as e:
        print("Failed to extract text from PDF:", e)
        return ""

def preprocess_text(text):
    """Preprocess text by cleaning and normalizing."""
    try:
        text = text.replace('\n', ' ').replace('\r', ' ')
        text = re.sub(r'[^\x00-\x7F]+', ' ', text)
        text = text.lower()
        text = re.sub(r'[^\w\s]', '', text)
        text = re.sub(r'\s+', ' ', text).strip()
        return text
    except Exception as e:
        print("Failed to preprocess text:", e)
        return ""

def process_files(file_contents: List[bytes]):
    """Process and combine text from multiple files."""
    all_text = ""
    for file_content in file_contents:
        extracted_text = extract_text_from_pdf(file_content)
        preprocessed_text = preprocess_text(extracted_text)
        all_text += preprocessed_text + " "
    return all_text

def compute_cosine_similarity_scores(query, retrieved_docs):
    """Compute cosine similarity scores between a query and retrieved documents."""
    model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
    query_embedding = model.encode(query, convert_to_tensor=True)
    doc_embeddings = model.encode(retrieved_docs, convert_to_tensor=True)
    cosine_scores = np.dot(doc_embeddings.cpu(), query_embedding.cpu().T)
    readable_scores = [{"doc": doc, "score": float(score)} for doc, score in zip(retrieved_docs, cosine_scores.flatten())]
    return readable_scores

def fetch_files_from_s3():
    """Fetch files from an S3 bucket."""
    s3 = boto3.client('s3', aws_access_key_id=access_key, aws_secret_access_key=secret_key)
    objects = s3.list_objects_v2(Bucket=bucket_name, Prefix=prefix)

    file_contents = []
    for obj in objects.get('Contents', []):
        if not obj['Key'].endswith('/'):  # Skip directories
            response = s3.get_object(Bucket=bucket_name, Key=obj['Key'])
            file_content = response['Body'].read()
            file_contents.append(file_content)
    return file_contents

def create_vector_store(all_text):
    """Create a vector store for similarity-based searching."""
    embeddings = SentenceTransformerEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
    texts = text_splitter.split_text(all_text)
    if not texts:
        print("No text chunks created.")
        return None

    vector_store = Chroma.from_texts(texts, embeddings, collection_metadata={"hnsw:space": "cosine"}, persist_directory="stores/insurance_cosine")
    print("Vector DB Successfully Created!")
    return vector_store

def load_vector_store():
    """Load the vector store from the persistent directory."""
    embeddings = SentenceTransformerEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
    try:
        db = Chroma(persist_directory="stores/insurance_cosine", embedding_function=embeddings)
        print("Vector DB Successfully Loaded!")
        return db
    except Exception as e:
        print("Failed to load Vector DB:", e)
        return None

def answer_query_with_similarity(query):
    """Answer a query by finding similar documents and generating responses using a language model."""
    try:
        # Load the vector store
        vector_store = load_vector_store()

        # If vector store doesn't exist, fetch files from S3, process them, and create the vector store
        if not vector_store:
            file_contents = fetch_files_from_s3()
            if not file_contents:
                print("No files fetched from S3.")
                return None

            all_text = process_files(file_contents)
            if not all_text.strip():
                print("No text extracted from documents.")
                return None

            vector_store = create_vector_store(all_text)
            if not vector_store:
                print("Failed to create Vector DB.")
                return None

        # Perform similarity search
        docs = vector_store.similarity_search(query)
        print(f"\n\nDocuments retrieved: {len(docs)}")

        if not docs:
            print("No documents match the query.")
            return None

        docs_content = [doc.page_content for doc in docs]

        # Compute cosine similarity scores
        cosine_similarity_scores = compute_cosine_similarity_scores(query, docs_content)

        all_docs_content = " ".join(docs_content)

        # Generate response using a language model
        template = """
                ### [INST] Instruction:
                You are an AI assistant named Goose. Your purpose is to provide accurate, relevant, and helpful information to users in a friendly, warm, and supportive manner, similar to ChatGPT. When responding to queries, please keep the following guidelines in mind:
                - When someone says hi, or small talk, only respond in a sentence.
                - Retrieve relevant information from your knowledge base to formulate accurate and informative responses.
                - Always maintain a positive, friendly, and encouraging tone in your interactions with users.
                - Strictly write crisp and clear answers, don't write unnecessary stuff.
                - Only answer the asked question, don't hallucinate or print any pre-information.
                - After providing the answer, always ask for any other help needed in the next paragraph.
                - Writing in bullet format is our top preference.
                Remember, your goal is to be a reliable, friendly, and supportive AI assistant that provides accurate information while creating a positive user experience, just like ChatGPT. Adapt your communication style to best suit each user's needs and preferences.
                ### Docs: {docs}
                ### Question: {question}
                """
        prompt = PromptTemplate.from_template(template.format(docs=all_docs_content, question=query))

        repo_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
        llm = HuggingFaceEndpoint(
            repo_id=repo_id,
            temperature=0.1,
            model_kwargs={'token': HUGGINGFACEHUB_API_TOKEN},
            top_p=0.15,
            max_new_tokens=256,
            repetition_penalty=1.1
        )
        llm_chain = LLMChain(prompt=prompt, llm=llm)

        answer = llm_chain.run(question=query).strip()
        print(f"\n\nAnswer: {answer}")

        return answer
    except Exception as e:
        print("An error occurred while getting the answer: ", str(e))
        return None

def gradio_interface(query):
    return answer_query_with_similarity(query)

interface = gr.Interface(
    fn=gradio_interface,
    inputs=gr.Textbox(lines=2, placeholder="Enter your query here..."),
    outputs="text",
    title="Document Query App"
)

if __name__ == "__main__":
    interface.launch()