Spaces:
Runtime error
Runtime error
File size: 8,075 Bytes
947c3f7 806e7bf b85b4f5 806e7bf b85b4f5 806e7bf b85b4f5 947c3f7 4f2c8ae 947c3f7 806e7bf 7b9ccbc 806e7bf 7b9ccbc 806e7bf b85b4f5 806e7bf b85b4f5 806e7bf b85b4f5 806e7bf b85b4f5 806e7bf b85b4f5 806e7bf b85b4f5 806e7bf 2e3e738 b85b4f5 2e3e738 b85b4f5 806e7bf b85b4f5 806e7bf b85b4f5 806e7bf b85b4f5 806e7bf b85b4f5 806e7bf b85b4f5 806e7bf b85b4f5 806e7bf b85b4f5 806e7bf c2f4356 b85b4f5 806e7bf b85b4f5 806e7bf b85b4f5 806e7bf 947c3f7 806e7bf 947c3f7 806e7bf 947c3f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import gradio as gr
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_community.llms import HuggingFaceEndpoint
import fitz # PyMuPDF
import pytesseract
from PIL import Image
import io
import re
import numpy as np
import boto3
from typing import List
from sentence_transformers import SentenceTransformer
from langchain_community.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import SentenceTransformerEmbeddings
import os
# AWS access credentials
access_key = os.getenv("access_key")
secret_key = os.getenv("secret_key")
# S3 bucket details
bucket_name = os.getenv("bucket_name")
prefix = os.getenv("prefix")
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
def extract_text_from_pdf(pdf_content):
"""Extract text from PDF content using OCR."""
try:
doc = fitz.open(stream=pdf_content, filetype="pdf")
text = ""
for page in doc:
pix = page.get_pixmap()
img = Image.open(io.BytesIO(pix.tobytes()))
text += pytesseract.image_to_string(img)
return text
except Exception as e:
print("Failed to extract text from PDF:", e)
return ""
def preprocess_text(text):
"""Preprocess text by cleaning and normalizing."""
try:
text = text.replace('\n', ' ').replace('\r', ' ')
text = re.sub(r'[^\x00-\x7F]+', ' ', text)
text = text.lower()
text = re.sub(r'[^\w\s]', '', text)
text = re.sub(r'\s+', ' ', text).strip()
return text
except Exception as e:
print("Failed to preprocess text:", e)
return ""
def process_files(file_contents: List[bytes]):
"""Process and combine text from multiple files."""
all_text = ""
for file_content in file_contents:
extracted_text = extract_text_from_pdf(file_content)
preprocessed_text = preprocess_text(extracted_text)
all_text += preprocessed_text + " "
return all_text
def compute_cosine_similarity_scores(query, retrieved_docs):
"""Compute cosine similarity scores between a query and retrieved documents."""
model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
query_embedding = model.encode(query, convert_to_tensor=True)
doc_embeddings = model.encode(retrieved_docs, convert_to_tensor=True)
cosine_scores = np.dot(doc_embeddings.cpu(), query_embedding.cpu().T)
readable_scores = [{"doc": doc, "score": float(score)} for doc, score in zip(retrieved_docs, cosine_scores.flatten())]
return readable_scores
def fetch_files_from_s3():
"""Fetch files from an S3 bucket."""
s3 = boto3.client('s3', aws_access_key_id=access_key, aws_secret_access_key=secret_key)
objects = s3.list_objects_v2(Bucket=bucket_name, Prefix=prefix)
file_contents = []
for obj in objects.get('Contents', []):
if not obj['Key'].endswith('/'): # Skip directories
response = s3.get_object(Bucket=bucket_name, Key=obj['Key'])
file_content = response['Body'].read()
file_contents.append(file_content)
return file_contents
def create_vector_store(all_text):
"""Create a vector store for similarity-based searching."""
embeddings = SentenceTransformerEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
texts = text_splitter.split_text(all_text)
if not texts:
print("No text chunks created.")
return None
vector_store = Chroma.from_texts(texts, embeddings, collection_metadata={"hnsw:space": "cosine"}, persist_directory="stores/insurance_cosine")
print("Vector DB Successfully Created!")
return vector_store
def load_vector_store():
"""Load the vector store from the persistent directory."""
embeddings = SentenceTransformerEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
try:
db = Chroma(persist_directory="stores/insurance_cosine", embedding_function=embeddings)
print("Vector DB Successfully Loaded!")
return db
except Exception as e:
print("Failed to load Vector DB:", e)
return None
def answer_query_with_similarity(query):
"""Answer a query by finding similar documents and generating responses using a language model."""
try:
# Load the vector store
vector_store = load_vector_store()
# If vector store doesn't exist, fetch files from S3, process them, and create the vector store
if not vector_store:
file_contents = fetch_files_from_s3()
if not file_contents:
print("No files fetched from S3.")
return None
all_text = process_files(file_contents)
if not all_text.strip():
print("No text extracted from documents.")
return None
vector_store = create_vector_store(all_text)
if not vector_store:
print("Failed to create Vector DB.")
return None
# Perform similarity search
docs = vector_store.similarity_search(query)
print(f"\n\nDocuments retrieved: {len(docs)}")
if not docs:
print("No documents match the query.")
return None
docs_content = [doc.page_content for doc in docs]
# Compute cosine similarity scores
cosine_similarity_scores = compute_cosine_similarity_scores(query, docs_content)
all_docs_content = " ".join(docs_content)
# Generate response using a language model
template = """
### [INST] Instruction:
You are an AI assistant named Goose. Your purpose is to provide accurate, relevant, and helpful information to users in a friendly, warm, and supportive manner, similar to ChatGPT. When responding to queries, please keep the following guidelines in mind:
- When someone says hi, or small talk, only respond in a sentence.
- Retrieve relevant information from your knowledge base to formulate accurate and informative responses.
- Always maintain a positive, friendly, and encouraging tone in your interactions with users.
- Strictly write crisp and clear answers, don't write unnecessary stuff.
- Only answer the asked question, don't hallucinate or print any pre-information.
- After providing the answer, always ask for any other help needed in the next paragraph.
- Writing in bullet format is our top preference.
Remember, your goal is to be a reliable, friendly, and supportive AI assistant that provides accurate information while creating a positive user experience, just like ChatGPT. Adapt your communication style to best suit each user's needs and preferences.
### Docs: {docs}
### Question: {question}
"""
prompt = PromptTemplate.from_template(template.format(docs=all_docs_content, question=query))
repo_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
llm = HuggingFaceEndpoint(
repo_id=repo_id,
temperature=0.1,
model_kwargs={'token': HUGGINGFACEHUB_API_TOKEN},
top_p=0.15,
max_new_tokens=256,
repetition_penalty=1.1
)
llm_chain = LLMChain(prompt=prompt, llm=llm)
answer = llm_chain.run(question=query).strip()
print(f"\n\nAnswer: {answer}")
return answer
except Exception as e:
print("An error occurred while getting the answer: ", str(e))
return None
def gradio_interface(query):
return answer_query_with_similarity(query)
interface = gr.Interface(
fn=gradio_interface,
inputs=gr.Textbox(lines=2, placeholder="Enter your query here..."),
outputs="text",
title="Document Query App"
)
if __name__ == "__main__":
interface.launch() |