File size: 5,841 Bytes
0175843
 
 
 
 
 
9b00b1d
0175843
 
 
 
 
 
 
 
9b00b1d
0175843
540b20d
364d4fe
 
6bc73f4
364d4fe
 
6bc73f4
0175843
 
 
 
 
 
 
 
 
6bc73f4
0175843
364d4fe
6bc73f4
364d4fe
0175843
364d4fe
0175843
 
 
 
 
 
 
 
 
 
 
 
364d4fe
0175843
364d4fe
0175843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b00b1d
0175843
 
 
 
 
 
 
 
 
 
 
 
 
 
481df07
 
0175843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b00b1d
0175843
9b00b1d
 
0175843
 
 
 
3a54452
 
0175843
 
 
 
364d4fe
 
0175843
9b00b1d
0175843
 
 
364d4fe
0175843
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import streamlit as st
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_community.llms import HuggingFaceEndpoint
from pdfminer.high_level import extract_text
import docx2txt
import io
import re
from typing import List
from langchain.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import SentenceTransformerEmbeddings
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
import os

HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")

def extract_text_from_pdf(pdf_content):
    return extract_text(io.BytesIO(pdf_content))

def extract_text_from_doc(doc_content):
    return docx2txt.process(io.BytesIO(doc_content))

def preprocess_text(text):
    text = text.replace('\n', ' ').replace('\r', ' ')
    text = re.sub(r'[^\x00-\x7F]+', ' ', text)
    text = text.lower()
    text = re.sub(r'[^\w\s]', '', text)
    text = re.sub(r'\s+', ' ', text).strip()
    return text

def process_files(file_contents: List[bytes]):
    all_text = ""
    for file_content in file_contents:
        if file_content.startswith(b'%PDF'):
            extracted_text = extract_text_from_pdf(file_content)
        else:
            extracted_text = extract_text_from_doc(file_content)
        preprocessed_text = preprocess_text(extracted_text)
        all_text += preprocessed_text + " "
    return all_text

def compute_cosine_similarity_scores(query, retrieved_docs):
    model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
    query_embedding = model.encode(query, convert_to_tensor=True)
    doc_embeddings = model.encode(retrieved_docs, convert_to_tensor=True)
    cosine_scores = np.dot(doc_embeddings, query_embedding.T)
    readable_scores = [{"doc": doc, "score": float(score)} for doc, score in zip(retrieved_docs, cosine_scores.flatten())]
    return readable_scores

def answer_query_with_similarity(query, file_contents):
    try:
        all_text = process_files(file_contents)

        embeddings = SentenceTransformerEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
        text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
        texts = text_splitter.split_text(all_text)

        vector_store = Chroma.from_texts(texts, embeddings, collection_metadata={"hnsw:space": "cosine"}, persist_directory="stores/insurance_cosine")
        load_vector_store = Chroma(persist_directory="stores/insurance_cosine", embedding_function=embeddings)
        print("Vector DB Successfully Created!")

        db3 = Chroma(persist_directory=f"stores/insurance_cosine", embedding_function=embeddings)
        docs = db3.similarity_search(query)
        print(f"\n\nDocuments retrieved: {len(docs)}")

        if not docs:
            print("No documents match the query.")
            return None

        docs_content = [doc.page_content for doc in docs]
        for i, content in enumerate(docs_content, start=1):
            print(f"\nDocument {i}: {content}...")

        cosine_similarity_scores = compute_cosine_similarity_scores(query, docs_content)
        for score in cosine_similarity_scores:
            print(f"\nDocument Score: {score['score']}")

        all_docs_content = " ".join(docs_content)

        template = """
                ### [INST] Instruction:Analyze the provided PDF and DOC documents focusing specifically on extracting factual content, mathematical data, and crucial information relevant to device specifications, including discription. Utilize the RAG model's retrieval capabilities to ensure accuracy and minimize the risk of hallucinations in the generated content. Present the findings in a structured and clear format, incorporating:
                    Ensure the response is well-organized, using bullet points or numbered lists where applicable, to enhance readability and presentation. Avoid any form of hallucination by cross-referencing facts with the document content directly.
                    Always act as a frinedly assistant, to improve the user experience and feel of the answer.
                    Only print the answer, in a well organised way, and always behave like a helpful assistant.
                ### Docs : {docs}
                ### Question : {question}
                """
        prompt = PromptTemplate.from_template(template.format(docs=all_docs_content, question=query))

        repo_id = "meta-llama/Meta-Llama-3-8B-Instruct"
        llm = HuggingFaceEndpoint(repo_id=repo_id, temperature=0.1, token=HUGGINGFACEHUB_API_TOKEN,
                                  top_p=0.15,
                                  max_new_tokens=512,
                                  repetition_penalty=1.1
                                  )
        llm_chain = LLMChain(prompt=prompt, llm=llm)

        answer = llm_chain.run(question=query)
        cleaned_answer = answer.split("Answer:")[-1].strip()
        print(f"\n\nAnswer: {cleaned_answer}")

        return cleaned_answer
    except Exception as e:
        print("An error occurred while getting the answer: ", str(e))
        return None

def main():
    st.title("Document Query App")

    uploaded_files = st.file_uploader("Upload files", accept_multiple_files=True)
    file_contents = [file.read() for file in uploaded_files]

    query = st.text_input("Enter your query:")

    if st.button("Get Answer"):
        if file_contents and query:
            response = answer_query_with_similarity(query, file_contents)
            if response:
                st.write("Answer:", response)
            else:
                st.write("No answer found.")
        else:
            st.write("Please provide files and a query.")

if __name__ == "__main__":
    main()