File size: 6,719 Bytes
0175843
 
 
 
 
 
9b00b1d
0175843
 
 
 
 
 
 
 
9b00b1d
0175843
540b20d
364d4fe
 
6bc73f4
364d4fe
 
6bc73f4
0175843
 
 
 
 
 
 
 
 
6bc73f4
0175843
364d4fe
6bc73f4
364d4fe
0175843
364d4fe
0175843
 
 
 
 
 
 
 
 
 
 
 
364d4fe
0175843
364d4fe
0175843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b00b1d
0175843
 
 
 
 
 
 
 
 
 
 
 
c865b7d
 
 
 
 
 
 
 
 
 
 
 
 
 
0175843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b00b1d
0175843
9b00b1d
 
0175843
 
 
 
3a54452
 
0175843
 
 
 
364d4fe
 
0175843
9b00b1d
0175843
 
 
364d4fe
0175843
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import streamlit as st
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_community.llms import HuggingFaceEndpoint
from pdfminer.high_level import extract_text
import docx2txt
import io
import re
from typing import List
from langchain.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import SentenceTransformerEmbeddings
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
import os

HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")

def extract_text_from_pdf(pdf_content):
    return extract_text(io.BytesIO(pdf_content))

def extract_text_from_doc(doc_content):
    return docx2txt.process(io.BytesIO(doc_content))

def preprocess_text(text):
    text = text.replace('\n', ' ').replace('\r', ' ')
    text = re.sub(r'[^\x00-\x7F]+', ' ', text)
    text = text.lower()
    text = re.sub(r'[^\w\s]', '', text)
    text = re.sub(r'\s+', ' ', text).strip()
    return text

def process_files(file_contents: List[bytes]):
    all_text = ""
    for file_content in file_contents:
        if file_content.startswith(b'%PDF'):
            extracted_text = extract_text_from_pdf(file_content)
        else:
            extracted_text = extract_text_from_doc(file_content)
        preprocessed_text = preprocess_text(extracted_text)
        all_text += preprocessed_text + " "
    return all_text

def compute_cosine_similarity_scores(query, retrieved_docs):
    model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
    query_embedding = model.encode(query, convert_to_tensor=True)
    doc_embeddings = model.encode(retrieved_docs, convert_to_tensor=True)
    cosine_scores = np.dot(doc_embeddings, query_embedding.T)
    readable_scores = [{"doc": doc, "score": float(score)} for doc, score in zip(retrieved_docs, cosine_scores.flatten())]
    return readable_scores

def answer_query_with_similarity(query, file_contents):
    try:
        all_text = process_files(file_contents)

        embeddings = SentenceTransformerEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
        text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
        texts = text_splitter.split_text(all_text)

        vector_store = Chroma.from_texts(texts, embeddings, collection_metadata={"hnsw:space": "cosine"}, persist_directory="stores/insurance_cosine")
        load_vector_store = Chroma(persist_directory="stores/insurance_cosine", embedding_function=embeddings)
        print("Vector DB Successfully Created!")

        db3 = Chroma(persist_directory=f"stores/insurance_cosine", embedding_function=embeddings)
        docs = db3.similarity_search(query)
        print(f"\n\nDocuments retrieved: {len(docs)}")

        if not docs:
            print("No documents match the query.")
            return None

        docs_content = [doc.page_content for doc in docs]
        for i, content in enumerate(docs_content, start=1):
            print(f"\nDocument {i}: {content}...")

        cosine_similarity_scores = compute_cosine_similarity_scores(query, docs_content)
        for score in cosine_similarity_scores:
            print(f"\nDocument Score: {score['score']}")

        all_docs_content = " ".join(docs_content)

        template = """
                ### [INST] Instruction:You are an AI assistant named HelpfulRAG. Your purpose is to provide accurate, relevant, and helpful information to users in a friendly, warm, and supportive manner, similar to ChatGPT. When responding to queries, please keep the following guidelines in mind:

                Retrieve relevant information from your knowledge base to formulate accurate and informative responses.
                Always maintain a positive, friendly, and encouraging tone in your interactions with users.
                Show empathy and understanding when addressing sensitive topics or user concerns.
                Break down complex concepts into easily understandable explanations.
                Offer step-by-step guidance or examples when appropriate to help users grasp the information better.
                Encourage users to ask follow-up questions and provide additional context if needed for a more accurate response.
                If you are uncertain about an answer or lack sufficient information, honestly communicate this to the user and suggest alternative resources or ways they can find the information they need.
                Maintain a conversational and engaging style, using simple and clear language.
                Personalize your responses when appropriate to create a more meaningful connection with the user.
                Always prioritize the user's well-being, and avoid providing any information that could potentially cause harm or be misleading.

                Remember, your goal is to be a reliable, friendly, and supportive AI assistant that provides accurate information while creating a positive user experience, just like ChatGPT. Adapt your communication style to best suit each user's needs and preferences.
                ### Docs : {docs}
                ### Question : {question}
                """
        prompt = PromptTemplate.from_template(template.format(docs=all_docs_content, question=query))

        repo_id = "meta-llama/Meta-Llama-3-8B-Instruct"
        llm = HuggingFaceEndpoint(repo_id=repo_id, temperature=0.1, token=HUGGINGFACEHUB_API_TOKEN,
                                  top_p=0.15,
                                  max_new_tokens=512,
                                  repetition_penalty=1.1
                                  )
        llm_chain = LLMChain(prompt=prompt, llm=llm)

        answer = llm_chain.run(question=query)
        cleaned_answer = answer.split("Answer:")[-1].strip()
        print(f"\n\nAnswer: {cleaned_answer}")

        return cleaned_answer
    except Exception as e:
        print("An error occurred while getting the answer: ", str(e))
        return None

def main():
    st.title("Document Query App")

    uploaded_files = st.file_uploader("Upload files", accept_multiple_files=True)
    file_contents = [file.read() for file in uploaded_files]

    query = st.text_input("Enter your query:")

    if st.button("Get Answer"):
        if file_contents and query:
            response = answer_query_with_similarity(query, file_contents)
            if response:
                st.write("Answer:", response)
            else:
                st.write("No answer found.")
        else:
            st.write("Please provide files and a query.")

if __name__ == "__main__":
    main()