Spaces:
Sleeping
Sleeping
Update function.py
Browse files- function.py +16 -8
function.py
CHANGED
@@ -2,26 +2,34 @@ from langchain.prompts import PromptTemplate
|
|
2 |
from langchain.llms import CTransformers
|
3 |
from langchain.chains import LLMChain
|
4 |
from langchain.chains import SequentialChain
|
|
|
|
|
5 |
|
6 |
-
|
|
|
7 |
|
8 |
# Create function for app
|
9 |
def GetLLMResponse(selected_topic_level,
|
10 |
selected_topic,
|
11 |
num_quizzes):
|
12 |
-
|
13 |
# Calling llama model
|
14 |
# llm = CTransformers(model="D:\Code Workspace\DL Model\llama-2-7b-chat.ggmlv3.q8_0.bin",
|
15 |
# model_type = 'llama',
|
16 |
# config = config)
|
17 |
|
18 |
-
llm = CTransformers(model='TheBloke/Llama-2-7B-Chat-GGML',
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
## Create LLM Chaining
|
24 |
-
questions_template = "Generate a {selected_topic_level} math quiz on the topic of {selected_topic}.
|
25 |
questions_prompt = PromptTemplate(input_variables=["selected_topic_level", "selected_topic", "num_quizzes"],
|
26 |
template=questions_template)
|
27 |
questions_chain = LLMChain(llm= llm,
|
@@ -29,7 +37,7 @@ def GetLLMResponse(selected_topic_level,
|
|
29 |
output_key = "questions")
|
30 |
|
31 |
|
32 |
-
answer_template = "
|
33 |
answer_prompt = PromptTemplate(input_variables = ["questions"],
|
34 |
template = answer_template)
|
35 |
answer_chain = LLMChain(llm = llm,
|
|
|
2 |
from langchain.llms import CTransformers
|
3 |
from langchain.chains import LLMChain
|
4 |
from langchain.chains import SequentialChain
|
5 |
+
from langchain.llms import HuggingFaceHub
|
6 |
+
from dotenv import load_dotenv
|
7 |
|
8 |
+
load_dotenv();
|
9 |
+
config = {'max_new_tokens': 512, 'temperature': 0.6}
|
10 |
|
11 |
# Create function for app
|
12 |
def GetLLMResponse(selected_topic_level,
|
13 |
selected_topic,
|
14 |
num_quizzes):
|
15 |
+
|
16 |
# Calling llama model
|
17 |
# llm = CTransformers(model="D:\Code Workspace\DL Model\llama-2-7b-chat.ggmlv3.q8_0.bin",
|
18 |
# model_type = 'llama',
|
19 |
# config = config)
|
20 |
|
21 |
+
# llm = CTransformers(model='TheBloke/Llama-2-7B-Chat-GGML',
|
22 |
+
# model_file = 'llama-2-7b-chat.ggmlv3.q8_0.bin',
|
23 |
+
# model_type = 'llama',
|
24 |
+
# config = config)
|
25 |
+
|
26 |
+
llm = HuggingFaceHub(
|
27 |
+
repo_id = "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
28 |
+
model_kwargs = config
|
29 |
+
)
|
30 |
|
31 |
## Create LLM Chaining
|
32 |
+
questions_template = "I want you to just generate question with this specification: Generate a {selected_topic_level} math quiz on the topic of {selected_topic}. Generate only {num_quizzes} questions not more and without providing answers. The Question should not in image format/link"
|
33 |
questions_prompt = PromptTemplate(input_variables=["selected_topic_level", "selected_topic", "num_quizzes"],
|
34 |
template=questions_template)
|
35 |
questions_chain = LLMChain(llm= llm,
|
|
|
37 |
output_key = "questions")
|
38 |
|
39 |
|
40 |
+
answer_template = "I want you to become a teacher answer this specific Question:\n {questions}\n\n. You should gave me a straightforward and consise explanation and answer to each one of them"
|
41 |
answer_prompt = PromptTemplate(input_variables = ["questions"],
|
42 |
template = answer_template)
|
43 |
answer_chain = LLMChain(llm = llm,
|