Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from langchain.chat_models import AzureChatOpenAI
|
4 |
+
from langchain.schema import format_document
|
5 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
6 |
+
from langchain.prompts import PromptTemplate
|
7 |
+
from langchain.prompts import ChatPromptTemplate
|
8 |
+
from langchain.schema.output_parser import StrOutputParser
|
9 |
+
from langchain.schema.runnable import RunnableLambda, RunnablePassthrough
|
10 |
+
from operator import itemgetter
|
11 |
+
# import socks
|
12 |
+
# import socket
|
13 |
+
# import requests
|
14 |
+
|
15 |
+
# # 设置 SOCKS5 代理和认证信息
|
16 |
+
# socks.set_default_proxy(socks.SOCKS5, "sftp-v-proxy.szh.internet.bosch.com", 1080, True, 'zfn3wx_ftp', 'Bosch@123')
|
17 |
+
#
|
18 |
+
# # 将 socket 的默认连接重定向到 SOCKS5 代理
|
19 |
+
# socket.socket = socks.socksocket
|
20 |
+
|
21 |
+
os.environ["OPENAI_API_KEY"] = '8b3bb832d6ef4a019a6fbddb4986cb9b'
|
22 |
+
os.environ["OPENAI_API_TYPE"] = 'azure'
|
23 |
+
os.environ["OPENAI_API_VERSION"] = '2023-07-01-preview'
|
24 |
+
os.environ["OPENAI_API_BASE"] = 'https://ostingpteu.openai.azure.com/'
|
25 |
+
|
26 |
+
llm = AzureChatOpenAI(deployment_name='OstinAIEU', model_name="gpt-35-turbo")
|
27 |
+
import time
|
28 |
+
from langchain.vectorstores import Weaviate
|
29 |
+
import weaviate
|
30 |
+
|
31 |
+
WEAVIATE_URL = 'http://40.81.20.137:8080'
|
32 |
+
client = weaviate.Client(
|
33 |
+
url=WEAVIATE_URL
|
34 |
+
)
|
35 |
+
|
36 |
+
embedding = OpenAIEmbeddings(deployment="ostinembedding")
|
37 |
+
vectordb = Weaviate(client=client, index_name="GS_data", text_key="text")
|
38 |
+
|
39 |
+
from langchain.retrievers.weaviate_hybrid_search import WeaviateHybridSearchRetriever
|
40 |
+
from langchain.schema import Document
|
41 |
+
|
42 |
+
# 定义元数据的过滤条件
|
43 |
+
retriever = WeaviateHybridSearchRetriever(
|
44 |
+
client=client,
|
45 |
+
index_name="GS_data",
|
46 |
+
text_key="text",
|
47 |
+
attributes=['title', 'update_time', 'source_name', 'url'],
|
48 |
+
create_schema_if_missing=True,
|
49 |
+
k=5,
|
50 |
+
)
|
51 |
+
|
52 |
+
from typing import List
|
53 |
+
|
54 |
+
|
55 |
+
def _format_docs(docs: List[Document]) -> str:
|
56 |
+
buffer = ''
|
57 |
+
for doc in docs:
|
58 |
+
# Start with the document's title if available
|
59 |
+
# doc_string = f"Title: {doc.metadata.get('title', 'No Title')}\n"
|
60 |
+
# Iterate over all metadata key-value pairs
|
61 |
+
doc_string = ''
|
62 |
+
for key, value in doc.metadata.items():
|
63 |
+
doc_string += f"{key.capitalize()}: {value}\n"
|
64 |
+
|
65 |
+
# Adding this document's string to the buffer
|
66 |
+
buffer += doc_string + '\n' # Added an extra newline for separation between documents
|
67 |
+
|
68 |
+
return buffer
|
69 |
+
|
70 |
+
|
71 |
+
DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template="{page_content}")
|
72 |
+
|
73 |
+
|
74 |
+
def _combine_documents(
|
75 |
+
docs, document_prompt=DEFAULT_DOCUMENT_PROMPT, document_separator="\n\n"
|
76 |
+
):
|
77 |
+
doc_strings = [format_document(doc, document_prompt) for doc in docs]
|
78 |
+
return document_separator.join(doc_strings)
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
template = """"You are an expert, tasked to answer any question about Global Business Services (GS) . Using the
|
83 |
+
provided context, answer the user's question to the best of your ability using the resources provided. Generate a
|
84 |
+
comprehensive and informative answer (but no more than 80 words) for a given question based solely on the context.
|
85 |
+
Use an unbiased and journalistic tone. Combine search results together into a coherent answer. Do not repeat text
|
86 |
+
If there is nothing in the context relevant to the question at hand, just say "Sorry, I'm not sure. Could you provide
|
87 |
+
more information?" Don't try to make up an answer. You should use bullet points in your answer for readability."
|
88 |
+
{context}
|
89 |
+
|
90 |
+
Question: {question}
|
91 |
+
"""
|
92 |
+
ANSWER_PROMPT = ChatPromptTemplate.from_template(template)
|
93 |
+
|
94 |
+
|
95 |
+
def ans_format(ans) -> str:
|
96 |
+
answer = ans['answer']
|
97 |
+
sources = ans['sources']
|
98 |
+
return f"{answer} \n\n \n\nHere are the sources:\n{sources}"
|
99 |
+
|
100 |
+
# Now we retrieve the documents
|
101 |
+
retrieved_documents = RunnablePassthrough.assign(docs=itemgetter('question') | retriever)
|
102 |
+
|
103 |
+
# Now we construct the inputs for the final prompt
|
104 |
+
final_inputs = {
|
105 |
+
"context": lambda x: _combine_documents(x["docs"]),
|
106 |
+
"question": itemgetter("question"),
|
107 |
+
}
|
108 |
+
|
109 |
+
# And finally, we do the part that returns the answers
|
110 |
+
answer = {
|
111 |
+
"answer": final_inputs | ANSWER_PROMPT | llm,
|
112 |
+
"docs": itemgetter("docs"),
|
113 |
+
}
|
114 |
+
|
115 |
+
organized_ans = {
|
116 |
+
'ans': {
|
117 |
+
'answer': lambda x: x["answer"].content,
|
118 |
+
'sources': lambda x: _format_docs(x["docs"]),
|
119 |
+
}
|
120 |
+
| RunnableLambda(ans_format)
|
121 |
+
| StrOutputParser()
|
122 |
+
|
123 |
+
}
|
124 |
+
|
125 |
+
# And now we put it all together!
|
126 |
+
final_chain = retrieved_documents | answer | organized_ans | RunnablePassthrough()
|
127 |
+
|
128 |
+
|
129 |
+
def response(msg: str) -> str:
|
130 |
+
inp = {'question': msg}
|
131 |
+
return final_chain.invoke(inp)['ans']
|
132 |
+
|
133 |
+
|
134 |
+
gr.Interface(fn=response, inputs=gr.Textbox(lines=2, placeholder="Ask Here..."), outputs="text").launch()
|