initial commit
Browse files- Dockerfile +52 -0
- README.md +28 -1
- actions/__pycache__/actions.cpython-38.pyc +0 -0
- actions/actions.py +53 -0
- app.py +16 -58
- config.yml +14 -0
- data/nlu.yml +17 -0
- data/rules.yml +18 -0
- domain.yml +16 -0
- endpoints.yml +14 -0
- requirements.txt +2 -1
Dockerfile
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use Python 3.8 slim
|
2 |
+
FROM python:3.8-slim
|
3 |
+
|
4 |
+
# 1) System deps
|
5 |
+
RUN apt-get update && \
|
6 |
+
apt-get install -y --no-install-recommends git build-essential && \
|
7 |
+
rm -rf /var/lib/apt/lists/*
|
8 |
+
|
9 |
+
WORKDIR /app
|
10 |
+
|
11 |
+
# 2) Install Rasa 2.8.3 from source (patch typing-extensions)
|
12 |
+
RUN git clone --depth 1 --branch 2.8.3 https://github.com/RasaHQ/rasa.git /rasa-src && \
|
13 |
+
cd /rasa-src && \
|
14 |
+
sed -i "s/typing-extensions<4.0.0 and >=3.7.4/typing-extensions<5.0.0 and >=3.7.4/" setup.cfg && \
|
15 |
+
pip install --no-cache-dir .
|
16 |
+
|
17 |
+
# 3) Install Rasa SDK so your custom actions work
|
18 |
+
RUN pip install --no-cache-dir rasa-sdk==2.8.3
|
19 |
+
|
20 |
+
# 4) Pin protobuf so TensorFlow protos load
|
21 |
+
RUN pip install --no-cache-dir "protobuf<3.21.0,>=3.20.0"
|
22 |
+
|
23 |
+
# 5) Pin TensorFlow to the 2.8.x line Rasa 2.8.3 expects
|
24 |
+
RUN pip install --no-cache-dir "tensorflow<2.9.0,>=2.8.0"
|
25 |
+
|
26 |
+
# 6) Pin NumPy to a 1.20–1.23 release for C-API compatibility & deprecated aliases
|
27 |
+
RUN pip install --no-cache-dir "numpy>=1.20.0,<1.24.0"
|
28 |
+
|
29 |
+
# 7) Copy in your Rasa project
|
30 |
+
COPY domain.yml config.yml endpoints.yml /app/
|
31 |
+
COPY data /app/data
|
32 |
+
COPY actions /app/actions
|
33 |
+
|
34 |
+
# 8) Patch out the obsolete decorator before training
|
35 |
+
RUN sed -i '/@training.enable_multi_worker/d' \
|
36 |
+
/usr/local/lib/python3.8/site-packages/rasa/utils/tensorflow/temp_keras_modules.py
|
37 |
+
|
38 |
+
# 9) Train your model (writes into /app/models)
|
39 |
+
RUN rasa train
|
40 |
+
|
41 |
+
# 10) Install Gradio v4 + HTTP client
|
42 |
+
COPY requirements.txt /app/requirements.txt
|
43 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
44 |
+
|
45 |
+
# 11) Copy your Gradio wrapper
|
46 |
+
COPY app.py /app/app.py
|
47 |
+
|
48 |
+
# 12) Expose ports (actions, Rasa API, Gradio UI)
|
49 |
+
EXPOSE 5055 5005 7860
|
50 |
+
|
51 |
+
# 13) Launch everything: action server, Rasa REST API, then Gradio
|
52 |
+
ENTRYPOINT ["bash","-lc","rasa run actions & rasa run --enable-api --port 5005 & python app.py"]
|
README.md
CHANGED
@@ -10,4 +10,31 @@ pinned: false
|
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
+
# RasaBot + Gradio v4 Demo on HuggingFace Spaces (CPU)
|
14 |
+
|
15 |
+
This Space runs a tiny Rasa 2.8.3 assistant inside a **Gradio v4** chat UI on a **CPU** plan.
|
16 |
+
|
17 |
+
## Files
|
18 |
+
|
19 |
+
- **Dockerfile**
|
20 |
+
Python 3.8 → installs Rasa 2.8.3 + Gradio v4 → `rasa init` → `rasa train` → launches `app.py`.
|
21 |
+
|
22 |
+
- **requirements.txt**
|
23 |
+
Pins Rasa and Gradio to v4-compatible versions.
|
24 |
+
|
25 |
+
- **app.py**
|
26 |
+
Loads the Rasa model and serves a chat UI via Gradio Blocks.
|
27 |
+
|
28 |
+
- **README.md** (this file)
|
29 |
+
|
30 |
+
## Deploy on HuggingFace Spaces
|
31 |
+
|
32 |
+
1. Create a new Space with **Hardware: CPU** and **Environment: Docker**.
|
33 |
+
2. Push these four files to your repo.
|
34 |
+
3. The Space will build, train, and expose the Gradio chat at `/`.
|
35 |
+
|
36 |
+
## Local Testing
|
37 |
+
|
38 |
+
```bash
|
39 |
+
docker build -t rasa-gradio-v4 .
|
40 |
+
docker run -it --rm -p 7860:7860 rasa-gradio-v4
|
actions/__pycache__/actions.cpython-38.pyc
ADDED
Binary file (1.92 kB). View file
|
|
actions/actions.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This files contains your custom actions which can be used to run
|
2 |
+
# custom Python code.
|
3 |
+
#
|
4 |
+
# See this guide on how to implement these action:
|
5 |
+
# https://rasa.com/docs/rasa/custom-actions
|
6 |
+
|
7 |
+
|
8 |
+
# This is a simple example for a custom action which utters "Hello World!"
|
9 |
+
|
10 |
+
from typing import Any, Text, Dict, List
|
11 |
+
|
12 |
+
from rasa_sdk import Action, Tracker
|
13 |
+
from rasa_sdk.executor import CollectingDispatcher
|
14 |
+
|
15 |
+
|
16 |
+
class action_ReversePhoneLookup(Action):
|
17 |
+
|
18 |
+
def name(self) -> Text:
|
19 |
+
return "action_ReversePhoneLookup"
|
20 |
+
|
21 |
+
def run(self, dispatcher: CollectingDispatcher,
|
22 |
+
tracker: Tracker,
|
23 |
+
domain: Dict[Text, Any]) -> List[Dict[Text, Any]]:
|
24 |
+
|
25 |
+
dispatcher.utter_message(text="反查來電處理")
|
26 |
+
|
27 |
+
return []
|
28 |
+
|
29 |
+
class action_CallReservationHotline(Action):
|
30 |
+
|
31 |
+
def name(self) -> Text:
|
32 |
+
return "action_CallReservationHotline"
|
33 |
+
|
34 |
+
def run(self, dispatcher: CollectingDispatcher,
|
35 |
+
tracker: Tracker,
|
36 |
+
domain: Dict[Text, Any]) -> List[Dict[Text, Any]]:
|
37 |
+
|
38 |
+
dispatcher.utter_message(text="預約或修改掛號處理")
|
39 |
+
|
40 |
+
return []
|
41 |
+
|
42 |
+
class action_human_handoff(Action):
|
43 |
+
|
44 |
+
def name(self) -> Text:
|
45 |
+
return "action_human_handoff"
|
46 |
+
|
47 |
+
def run(self, dispatcher: CollectingDispatcher,
|
48 |
+
tracker: Tracker,
|
49 |
+
domain: Dict[Text, Any]) -> List[Dict[Text, Any]]:
|
50 |
+
|
51 |
+
dispatcher.utter_message(text="其他處理")
|
52 |
+
|
53 |
+
return []
|
app.py
CHANGED
@@ -1,64 +1,22 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
|
4 |
-
""
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
-
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import requests
|
3 |
|
4 |
+
RASA_URL = "http://localhost:5005/webhooks/rest/webhook"
|
|
|
|
|
|
|
5 |
|
6 |
+
def bot_response(user_message, chat_history):
|
7 |
+
resp = requests.post(RASA_URL, json={
|
8 |
+
"sender": "user",
|
9 |
+
"message": user_message
|
10 |
+
}).json()
|
11 |
+
bot_reply = resp[0].get("text") if resp else "🤖 (no reply)"
|
12 |
+
chat_history.append((user_message, bot_reply))
|
13 |
+
return chat_history
|
14 |
|
15 |
+
with gr.Blocks(title="Rasa 2.8.3 + Gradio v4 Demo") as demo:
|
16 |
+
chatbot = gr.Chatbot(label="Rasa Bot", height=400)
|
17 |
+
user_input = gr.Textbox(placeholder="Type here...", show_label=False)
|
18 |
+
user_input.submit(bot_response, inputs=[user_input, chatbot], outputs=chatbot)
|
19 |
+
gr.Button("Clear").click(lambda: [], None, chatbot)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
if __name__ == "__main__":
|
22 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, share=False)
|
config.yml
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Configuration for Rasa NLU.
|
2 |
+
# https://rasa.com/docs/rasa/nlu/components/
|
3 |
+
language: zh
|
4 |
+
|
5 |
+
pipeline:
|
6 |
+
# # No configuration for the NLU pipeline was provided. The following default pipeline was used to train your model.
|
7 |
+
# # If you'd like to customize it, uncomment and adjust the pipeline.
|
8 |
+
# # See https://rasa.com/docs/rasa/tuning-your-model for more information.
|
9 |
+
- name: "KeywordIntentClassifier"
|
10 |
+
|
11 |
+
# Configuration for Rasa Core.
|
12 |
+
# https://rasa.com/docs/rasa/core/policies/
|
13 |
+
policies:
|
14 |
+
- name: RulePolicy
|
data/nlu.yml
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
version: "2.0"
|
2 |
+
|
3 |
+
nlu:
|
4 |
+
- intent: ReversePhoneLookup
|
5 |
+
examples: |
|
6 |
+
- 我剛才有未接來電,想知道是誰打來的
|
7 |
+
- 我看到有未接來電,請問找我有什麼事
|
8 |
+
|
9 |
+
- intent: CallReservationHotline
|
10 |
+
examples: |
|
11 |
+
- 我想要預約心臟科的門診
|
12 |
+
- 我想預約健康檢查
|
13 |
+
|
14 |
+
- intent: out_of_scope
|
15 |
+
examples: |
|
16 |
+
- 請問醫院的營業時間是什麼時候
|
17 |
+
- 我想查詢我的檢查報告結果
|
data/rules.yml
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
version: "2.0"
|
2 |
+
|
3 |
+
rules:
|
4 |
+
|
5 |
+
- rule: reverse phone lookup
|
6 |
+
steps:
|
7 |
+
- intent: ReversePhoneLookup
|
8 |
+
- action: action_ReversePhoneLookup
|
9 |
+
|
10 |
+
- rule: book or modify an appointment
|
11 |
+
steps:
|
12 |
+
- intent: CallReservationHotline
|
13 |
+
- action: action_CallReservationHotline
|
14 |
+
|
15 |
+
- rule: out of scope handling
|
16 |
+
steps:
|
17 |
+
- intent: out_of_scope
|
18 |
+
- action: action_human_handoff
|
domain.yml
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
version: "2.0"
|
2 |
+
|
3 |
+
intents:
|
4 |
+
- ReversePhoneLookup
|
5 |
+
- CallReservationHotline
|
6 |
+
- out_of_scope
|
7 |
+
|
8 |
+
actions:
|
9 |
+
- action_ReversePhoneLookup
|
10 |
+
- action_CallReservationHotline
|
11 |
+
- action_human_handoff
|
12 |
+
|
13 |
+
|
14 |
+
session_config:
|
15 |
+
session_expiration_time: 60
|
16 |
+
carry_over_slots_to_new_session: true
|
endpoints.yml
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file contains the different endpoints your bot can use.
|
2 |
+
|
3 |
+
# Server where the models are pulled from.
|
4 |
+
# https://rasa.com/docs/rasa/model-storage#fetching-models-from-a-server
|
5 |
+
|
6 |
+
#models:
|
7 |
+
# url: http://my-server.com/models/default_core@latest
|
8 |
+
# wait_time_between_pulls: 10 # [optional](default: 100)
|
9 |
+
|
10 |
+
# Server which runs your custom actions.
|
11 |
+
# https://rasa.com/docs/rasa/custom-actions
|
12 |
+
|
13 |
+
action_endpoint:
|
14 |
+
url: "http://localhost:5055/webhook"
|
requirements.txt
CHANGED
@@ -1 +1,2 @@
|
|
1 |
-
|
|
|
|
1 |
+
gradio==4.44.1
|
2 |
+
requests
|