Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
4 |
+
|
5 |
+
model_path = "LukeJacob2023/religion-classifier"
|
6 |
+
|
7 |
+
# 分类名称
|
8 |
+
labels = ["基督教", "佛教", "无信仰"]
|
9 |
+
# 1. 加载tokenizer和模型
|
10 |
+
tokenizer = BertTokenizer.from_pretrained(model_path)
|
11 |
+
model = BertForSequenceClassification.from_pretrained(model_path)
|
12 |
+
|
13 |
+
# 确保模型在评估模式
|
14 |
+
model.eval()
|
15 |
+
|
16 |
+
|
17 |
+
def predict(text):
|
18 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
19 |
+
with torch.no_grad():
|
20 |
+
outputs = model(**inputs)
|
21 |
+
probabilities = torch.nn.functional.softmax(outputs.logits / 5.0, dim=-1)[0]
|
22 |
+
return {label: float(prob) for label, prob in zip(labels, probabilities)}
|
23 |
+
|
24 |
+
|
25 |
+
# 创建Gradio接口
|
26 |
+
iface = gr.Interface(
|
27 |
+
fn=predict,
|
28 |
+
inputs=gr.Textbox(lines=2, label="Input Text"),
|
29 |
+
outputs=gr.Label(num_top_classes=3, label="Predictions", flagged=False),
|
30 |
+
title="Religion Classification",
|
31 |
+
description="请输入内容(繁体中文)"
|
32 |
+
)
|
33 |
+
|
34 |
+
# 启动Gradio应用
|
35 |
+
iface.launch()
|