Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import torch | |
from model import create_roberta_model | |
from timeit import default_timer as timer | |
from typing import Tuple, Dict | |
# Setup class names | |
with open("class_names.txt", "r") as f: | |
class_names = [name.strip() for name in f.readlines()] | |
### Load example texts ### | |
example_texts = [] | |
with open("example_texts.txt", "r") as file: | |
example_texts = [line.strip() for line in file.readlines()] | |
### Model and transforms preparation ### | |
# Create model and tokenizer | |
model, tokenizer = create_roberta_model(output_shape=len(class_names)) | |
# Load saved weights | |
model.load_state_dict( | |
torch.load(f="roberta-base.pth", | |
map_location=torch.device("cpu")) # load to CPU | |
) | |
### Predict function ### | |
def predict(text) -> Tuple[Dict, float]: | |
# Start a timer | |
start_time = timer() | |
# Set the model to eval | |
model.eval() | |
# Set up the inputs | |
X = tokenizer(text, padding="max_length", truncation=True, return_tensors='pt') | |
# Put model into eval mode, make prediction | |
model.eval() | |
with torch.inference_mode(): | |
# Pass tokenized text through the model and turn the prediction logits into probaiblities | |
pred_probs = torch.softmax(model(**X).logits, dim=1) | |
# Create a prediction label and prediction probability dictionary | |
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} | |
# Calculate pred time | |
end_time = timer() | |
pred_time = round(end_time - start_time, 4) | |
# Return pred dict and pred time | |
return pred_labels_and_probs, pred_time | |
### 4. Gradio app ### | |
# Create title, description and article | |
title = "A roberta-base Classifier" | |
description = "[A roberta-base BERT based model](https://huggingface.co/roberta-base) text model to classify text on the [HuggingFace 🤗 dair-ai/emotion dataset](https://huggingface.co/datasets/dair-ai/emotion). [Source Code Found Here](https://colab.research.google.com/drive/1P7rfiDF1jfNHKmkB7WjHPi8PQBLQ4Ege?usp=sharing)" | |
article = "Built with [Gradio](https://github.com/gradio-app/gradio) and [PyTorch](https://pytorch.org/). [Source Code Found Here](https://colab.research.google.com/drive/1P7rfiDF1jfNHKmkB7WjHPi8PQBLQ4Ege?usp=sharing)" | |
# Create the Gradio demo | |
demo = gr.Interface(fn=predict, | |
inputs=gr.Textbox(lines=2, placeholder="Type your text here..."), | |
outputs=[gr.Label(num_top_classes=5, label="Predictions"), | |
gr.Number(label="Prediction time (s)")], | |
examples=example_texts, | |
title=title, | |
description=description, | |
article=article) | |
# Launch the demo | |
demo.launch() | |