Spaces:
Runtime error
Runtime error
Remove torchinfo
Browse files
app.py
CHANGED
@@ -17,7 +17,7 @@ with open("example_texts.txt", "r") as file:
|
|
17 |
|
18 |
### Model and transforms preparation ###
|
19 |
# Create model and tokenizer
|
20 |
-
model, tokenizer = create_roberta_model(output_shape=len(class_names)
|
21 |
|
22 |
# Load saved weights
|
23 |
model.load_state_dict(
|
|
|
17 |
|
18 |
### Model and transforms preparation ###
|
19 |
# Create model and tokenizer
|
20 |
+
model, tokenizer = create_roberta_model(output_shape=len(class_names))
|
21 |
|
22 |
# Load saved weights
|
23 |
model.load_state_dict(
|
model.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import torch
|
2 |
-
from torchinfo import summary
|
3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
|
5 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -9,7 +8,7 @@ def model_input_wrapper(batch_size, sequence_length, tokenizer):
|
|
9 |
dummy_attention_mask = torch.ones(batch_size, sequence_length, dtype=torch.long)
|
10 |
return {'input_ids': dummy_input_ids, 'attention_mask': dummy_attention_mask}
|
11 |
|
12 |
-
def create_roberta_model(output_shape:int=10, device=device
|
13 |
"""Creates a HuggingFace roberta-base model.
|
14 |
|
15 |
Args:
|
@@ -31,8 +30,4 @@ def create_roberta_model(output_shape:int=10, device=device, print_summary=True)
|
|
31 |
|
32 |
model.classifier.out_proj = torch.nn.Linear(in_features=768, out_features=output_shape)
|
33 |
|
34 |
-
if print_summary:
|
35 |
-
sample_inputs = model_input_wrapper(1, 128, tokenizer)
|
36 |
-
print(summary(model, input_data=sample_inputs, verbose=0, col_names=["input_size", "output_size", "num_params", "trainable"], col_width=20, row_settings=["var_names"]))
|
37 |
-
|
38 |
return model.to(device), tokenizer
|
|
|
1 |
import torch
|
|
|
2 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
|
4 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
8 |
dummy_attention_mask = torch.ones(batch_size, sequence_length, dtype=torch.long)
|
9 |
return {'input_ids': dummy_input_ids, 'attention_mask': dummy_attention_mask}
|
10 |
|
11 |
+
def create_roberta_model(output_shape:int=10, device=device):
|
12 |
"""Creates a HuggingFace roberta-base model.
|
13 |
|
14 |
Args:
|
|
|
30 |
|
31 |
model.classifier.out_proj = torch.nn.Linear(in_features=768, out_features=output_shape)
|
32 |
|
|
|
|
|
|
|
|
|
33 |
return model.to(device), tokenizer
|