AIteen commited on
Commit
c33ca1f
·
verified ·
1 Parent(s): 04ea085

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -14,7 +14,7 @@ def last_token_pool(last_hidden_states: Tensor,
14
  batch_size = last_hidden_states.shape[0]
15
  return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
16
 
17
- def get_similarity_scores(queries: list, passages: list, model, tokenizer):
18
  tokenizer.add_eos_token = True
19
 
20
  max_length = 4096
@@ -27,7 +27,7 @@ def get_similarity_scores(queries: list, passages: list, model, tokenizer):
27
  scores = (embeddings[:len(queries)] @ embeddings[len(queries):].T) * 100
28
  return scores.tolist()
29
 
30
- def similarity_ui(keyNames:list, fields:list):
31
  task = 'Given a keyName, find similarity score against provided fields'
32
  queries = keyNames
33
  passages = fields
@@ -42,7 +42,7 @@ model = AutoModel.from_pretrained('Salesforce/SFR-Embedding-Mistral')
42
  # Create Gradio Interface
43
  gr.Interface(
44
  fn=similarity_ui,
45
- inputs="text", "text",
46
  outputs="text",
47
  title="Similarity Score Calculator",
48
  description="Enter a Key Name and 3 Fields to find similarity scores"
 
14
  batch_size = last_hidden_states.shape[0]
15
  return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
16
 
17
+ def get_similarity_scores(queries:list, passages:list, model, tokenizer):
18
  tokenizer.add_eos_token = True
19
 
20
  max_length = 4096
 
27
  scores = (embeddings[:len(queries)] @ embeddings[len(queries):].T) * 100
28
  return scores.tolist()
29
 
30
+ def similarity_ui(keyNames:List[str], fields:List[str]):
31
  task = 'Given a keyName, find similarity score against provided fields'
32
  queries = keyNames
33
  passages = fields
 
42
  # Create Gradio Interface
43
  gr.Interface(
44
  fn=similarity_ui,
45
+ inputs="text",
46
  outputs="text",
47
  title="Similarity Score Calculator",
48
  description="Enter a Key Name and 3 Fields to find similarity scores"