import streamlit as st from fastapi import FastAPI from transformers import pipeline classifier = pipeline("text-classification", model="hun3359/klue-bert-base-sentiment") # text = st.text_area('enter some text!') # classifier = pipeline("text-classification", model="hun3359/klue-bert-base-sentiment") # preds = classifier(text, top_k=None) # sorted_preds = sorted(preds, key=lambda x: x['score'], reverse=True) # for item in sorted_preds: # item['score'] = round(item['score'], 5) # if text: # st.json(sorted_preds) app = FastAPI() @app.get("/") async def root(): return {"messsage" : "Successfully Initiated"} # 유저로부터 text를 받아서 감정 분석 결과를 반환해주는 API @app.get("/sentiment/") async def sentiment(text: str = None): preds = classifier(text, top_k=None) sorted_preds = sorted(preds, key=lambda x: x['score'], reverse=True) for item in sorted_preds: item['score'] = round(item['score'], 5) return sorted_preds