File size: 1,422 Bytes
2b7bb94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from custom_torch_module.deploy_utils import Onnx_deploy_model
import gradio as gr
import time
from PIL import Image

model_path = "deploying model/" + "vit_xsmall_patch16_clip_224(trainble_0.15) (Acc 98.44%, Loss 0.168152).onnx"
input_size = [1, 3, 224, 224]
img_size = input_size[-1]

title = "Gender Vision mini"
description = "An ViT(xsmall_clip) based model(fine tuned with Custom dataset : around 800 train images & 200 test iamges) Accuracy : around 98.4% with the custom test dataset. Optimized with ONNX(around 1.7 times faster than PyTorch version on cpu)"
article = "Through bunch of fine tuning and experiments. !REMEMBER! This model can be wrong."

def predict(img):
    start_time = time.time()
    output = onnx_model.run(img, return_prob=True)
    end_time = time.time()
    elapsed_time = end_time - start_time

    pred_label_and_probs = {"Men" : output[0],"Women" : output[1]}

    return pred_label_and_probs, elapsed_time

onnx_model = Onnx_deploy_model(model_path=model_path, img_size=img_size)

# Create the Gradio demo
demo = gr.Interface(fn=predict, 
                    inputs=gr.Image(type="pil"),
                    outputs=[gr.Label(num_top_classes=2, label="Predictions"),
                             gr.Number(label="Prediction time (s)")], 
                    title=title,
                    description=description,
                    article=article)

# Launch the demo
demo.launch()