Changed model from Vit Xsmall clip to resnet50_clip_gap. Changed descriptioin and .onnx file
3cb2603
from custom_torch_module.deploy_utils import Onnx_deploy_model | |
import gradio as gr | |
import time | |
from PIL import Image | |
import os | |
from pathlib import Path | |
model_path = list(Path("deploying model/").glob("*.onnx"))[0] | |
input_size = [1, 3, 224, 224] | |
img_size = input_size[-1] | |
title = "Gender Vision mini" | |
description = "An resnet50_clip_gap based model(fine tuned with Custom dataset : around 800 train images & 200 test iamges) F1 Score : 100%(1.00) with the custom test dataset. Optimized with ONNX(around 1.7 times faster than PyTorch version on cpu)" | |
article = "Through bunch of fine tuning and experiments. !REMEMBER! This model can be wrong." | |
def predict(img): | |
start_time = time.time() | |
output = onnx_model.run(img, return_prob=True) | |
end_time = time.time() | |
elapsed_time = end_time - start_time | |
prediction_fps = 1 / elapsed_time | |
pred_label_and_probs = {"Men" : output[0],"Women" : output[1]} | |
return pred_label_and_probs, prediction_fps | |
onnx_model = Onnx_deploy_model(model_path=model_path, img_size=img_size) | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
# Create the Gradio demo | |
demo = gr.Interface(fn=predict, | |
inputs=gr.Image(type="pil"), | |
outputs=[gr.Label(num_top_classes=2, label="Predictions"), | |
gr.Number(label="Prediction speed(FPS)")], | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article) | |
# Launch the demo | |
demo.launch() |