File size: 11,987 Bytes
61e1114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
from model import build_transformer
from dataset import BilingualDataset, causal_mask
from config import get_config, get_weights_file_path

import torchtext.datasets as datasets
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader, random_split
from torch.optim.lr_scheduler import LambdaLR

import warnings
from tqdm import tqdm
import os
from pathlib import Path

# Huggingface datasets and tokenizers
from datasets import load_dataset
from tokenizers import Tokenizer
from tokenizers.models import WordLevel
from tokenizers.trainers import WordLevelTrainer
from tokenizers.pre_tokenizers import Whitespace

import torchmetrics
from torch.utils.tensorboard import SummaryWriter

def greedy_decode(model, source, source_mask, tokenizer_src, tokenizer_tgt, max_len, device):
    sos_idx = tokenizer_tgt.token_to_id("[SOS]")
    eos_idx = tokenizer_tgt.token_to_id("[EOS]")

    # Precompute the encoder output and reuse it for every step
    encoder_output = model.encode(source, source_mask)
    # Initialize the decoder input with the sos token
    decoder_input = torch.empty(1, 1).fill_(sos_idx).type_as(source).to(device)
    while True:
        if decoder_input.size(1) == max_len:
            break
        # build mask for target
        decoder_mask = causal_mask(decoder_input.size(1)).type_as(source_mask).to(device)
      

        # calculate output
        out =model.decode(decoder_input,source_mask,  decoder_mask, encoder_output)
     

        # get next token
        prob = model.project(out[:, -1])
        _, next_word = torch.max(prob, dim=1)
     
        decoder_input = torch.cat(
            [decoder_input, torch.empty(1, 1).type_as(source).fill_(next_word.item()).to(device)], dim=1
        )

        if next_word == eos_idx:
            break

    return decoder_input.squeeze(0)


def run_validation(model, validation_ds, tokenizer_src, tokenizer_tgt, max_len, device, print_msg, global_step,num_examples=2):
    model.eval()
    count = 0

    source_texts = []
    expected = []
    predicted = []

    try:
        # get the console window width
        with os.popen('stty size', 'r') as console:
            _, console_width = console.read().split()
            console_width = int(console_width)
    except:
        # If we can't get the console width, use 80 as default
        console_width = 80

    with torch.no_grad():
        for batch in validation_ds:
            count += 1
            encoder_input = batch["encoder_input"].to(device) # (b, seq_len)
            encoder_mask = batch["encoder_mask"].to(device) # (b, 1, 1, seq_len)

            # check that the batch size is 1
            assert encoder_input.size(
                0) == 1, "Batch size must be 1 for validation"

            model_out = greedy_decode(model, encoder_input, encoder_mask, tokenizer_src, tokenizer_tgt, max_len, device)

            source_text = batch["src_text"][0]
            target_text = batch["tgt_text"][0]
            model_out_text = tokenizer_tgt.decode(model_out.detach().cpu().numpy())

            source_texts.append(source_text)
            expected.append(target_text)
            predicted.append(model_out_text)
            
            # Print the source, target and model output
            print_msg('-'*console_width)
            print_msg(f"{f'SOURCE: ':>12}{source_text}")
            print_msg(f"{f'TARGET: ':>12}{target_text}")
            print_msg(f"{f'PREDICTED: ':>12}{model_out_text}")

            if count == num_examples:
                print_msg('-'*console_width)
                break
    
    # if writer:
    #     # Evaluate the character error rate
    #     # Compute the char error rate 
    #     metric = torchmetrics.CharErrorRate()
    #     cer = metric(predicted, expected)
    #     writer.add_scalar('validation cer', cer, global_step)
    #     writer.flush()

    #     # Compute the word error rate
    #     metric = torchmetrics.WordErrorRate()
    #     wer = metric(predicted, expected)
    #     writer.add_scalar('validation wer', wer, global_step)
    #     writer.flush()

    #     # Compute the BLEU metric
    #     metric = torchmetrics.BLEUScore()
    #     bleu = metric(predicted, expected)
    #     writer.add_scalar('validation BLEU', bleu, global_step)
    #     writer.flush()

def get_all_sentences(ds, lang):
    for item in ds:
        yield item[lang]

def get_or_build_tokenizer(config, ds, lang):
    tokenizer_path = Path(config['tokenizer_file'].format(lang))
    if not Path.exists(tokenizer_path):
        # Most code taken from: https://huggingface.co/docs/tokenizers/quicktour
        tokenizer = Tokenizer(WordLevel(unk_token="[UNK]"))
        tokenizer.pre_tokenizer = Whitespace()
        trainer = WordLevelTrainer(special_tokens=["[UNK]", "[PAD]", "[SOS]", "[EOS]"], min_frequency=2)
        tokenizer.train_from_iterator(get_all_sentences(ds, lang), trainer=trainer)
        tokenizer.save(str(tokenizer_path))
    else:
        tokenizer = Tokenizer.from_file(str(tokenizer_path))
    return tokenizer

def get_ds(config):
    # It only has the train split, so we divide it overselves
    ds_raw = load_dataset('Lwasinam/en-ha', 
    # f"{config['lang_src']}-{config['lang_tgt']}",
     split='train')
    print(ds_raw[0])
  
    # Build tokenizers
    tokenizer_src = get_or_build_tokenizer(config, ds_raw, config['lang_src'])
    tokenizer_tgt = get_or_build_tokenizer(config, ds_raw, config['lang_tgt'])
    seed = 42  # You can choose any integer as your seed
    torch.manual_seed(seed)
    # Keep 90% for training, 10% for validation
    train_ds_size = int(0.9 * len(ds_raw))
    val_ds_size = len(ds_raw) - train_ds_size
    train_ds_raw, val_ds_raw = random_split(ds_raw, [train_ds_size, val_ds_size])

    train_ds = BilingualDataset(train_ds_raw, tokenizer_src, tokenizer_tgt, config['lang_src'], config['lang_tgt'], config['seq_len'])
    val_ds = BilingualDataset(val_ds_raw, tokenizer_src, tokenizer_tgt, config['lang_src'], config['lang_tgt'], config['seq_len'])

    # Find the maximum length of each sentence in the source and target sentence
    max_len_src = 0
    max_len_tgt = 0

    for item in ds_raw:
        src_ids = tokenizer_src.encode(item[config['lang_src']]).ids
        tgt_ids = tokenizer_tgt.encode(item[config['lang_tgt']]).ids
        max_len_src = max(max_len_src, len(src_ids))
        max_len_tgt = max(max_len_tgt, len(tgt_ids))

    print(f'Max length of source sentence: {max_len_src}')
    print(f'Max length of target sentence: {max_len_tgt}')
    

    train_dataloader = DataLoader(train_ds, batch_size=config['batch_size'], shuffle=True)
    val_dataloader = DataLoader(val_ds, batch_size=1, shuffle=True)

    return train_dataloader, val_dataloader, tokenizer_src, tokenizer_tgt

def get_model(config, vocab_src_len, vocab_tgt_len):
    model = build_transformer( config['seq_len'],config['batch_size'], vocab_tgt_len,vocab_src_len, config['d_model'] )
    return model

def train_model(config):
    # Define the device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print("Using device:", device)

    # Make sure the weights folder exists
    Path(config['model_folder']).mkdir(parents=True, exist_ok=True)

    train_dataloader, val_dataloader, tokenizer_src, tokenizer_tgt = get_ds(config)
    model = get_model(config, tokenizer_src.get_vocab_size(), tokenizer_tgt.get_vocab_size()).to(device)
    # Tensorboard
    writer = SummaryWriter(config['experiment_name'])

    optimizer = torch.optim.Adam(model.parameters(), lr=config['lr'], eps=1e-9)

    # If the user specified a model to preload before training, load it
    initial_epoch = 0
    global_step = 0
    if config['preload']:
        model_filename = get_weights_file_path(config, config['preload'])
        print(f'Preloading model {model_filename}')
        state = torch.load(model_filename)
        model.load_state_dict(state['model_state_dict'])
        initial_epoch = state['epoch'] + 1
        optimizer.load_state_dict(state['optimizer_state_dict'])
        global_step = state['global_step']

    loss_fn = nn.CrossEntropyLoss(ignore_index=tokenizer_src.token_to_id("[PAD]"), label_smoothing=0.1).to(device)
 

    for epoch in range(initial_epoch, config['num_epochs']):
        model.train()
        batch_iterator = tqdm(train_dataloader, desc=f"Processing Epoch {epoch:02d}")
        for batch in batch_iterator:
            optimizer.zero_grad()

            encoder_input = batch['encoder_input'].to(device) # (b, seq_len)
            decoder_input = batch['decoder_input'].to(device) # (B, seq_len)
            encoder_mask = batch['encoder_mask'].to(device) # (B, 1, 1, seq_len)
            decoder_mask = batch['decoder_mask'].to(device) # (B, 1, seq_len, seq_len)

            # Run the tensors through the encoder, decoder and the projection layer
           
            encoder_output = model.encode(encoder_input, encoder_mask) # (B, seq_len, d_model)
            decoder_output = model.decode( decoder_input,encoder_mask,  decoder_mask, encoder_output) # (B, seq_len, d_model)
            proj_output = model.project(decoder_output)
           
             # (B, seq_len, vocab_size)

            # Compare the output with the label
            label = batch['label'].to(device) # (B, seq_len)

            # Compute the loss using a simple cross entropy
       
            loss = loss_fn(proj_output.view(-1, tokenizer_tgt.get_vocab_size()), label.view(-1))
            batch_iterator.set_postfix({"loss": f"{loss.item():6.3f}"})

            # Log the loss
            writer.add_scalar('train loss', loss.item(), global_step)
            writer.flush()

            # Backpropagate the loss
            loss.backward()

            # Update the weights
            optimizer.step()
            

            global_step += 1
        model.eval()
        eval_loss = 0.0
        # batch_iterator = tqdm(v_dataloader, desc=f"Processing Epoch {epoch:02d}")
        with torch.no_grad():
            for batch in val_dataloader:
            

                encoder_input = batch['encoder_input'].to(device) # (b, seq_len)
                decoder_input = batch['decoder_input'].to(device) # (B, seq_len)
                encoder_mask = batch['encoder_mask'].to(device) # (B, 1, 1, seq_len)
                decoder_mask = batch['decoder_mask'].to(device) # (B, 1, seq_len, seq_len)

                # Run the tensors through the encoder, decoder and the projection layer
            
                encoder_output = model.encode(encoder_input, encoder_mask) # (B, seq_len, d_model)
                decoder_output = model.decode( decoder_input,encoder_mask,  decoder_mask, encoder_output) # (B, seq_len, d_model)
                proj_output = model.project(decoder_output)
            
                # (B, seq_len, vocab_size)

                # Compare the output with the label
                label = batch['label'].to(device) # (B, seq_len)

                # Compute the loss using a simple cross entropy
        
                eval_loss += loss_fn(proj_output.view(-1, tokenizer_tgt.get_vocab_size()), label.view(-1))
           
                
        avg_val_loss = eval_loss / len(val_dataloader)
        print(f'Epoch {epoch},Validation Loss: {avg_val_loss.item()}')


        # Run validation at the end of every epoch
        run_validation(model, val_dataloader, tokenizer_src, tokenizer_tgt, config['seq_len'], device, lambda msg: batch_iterator.write(msg), global_step)

        # Save the model at the end of every epoch
        model_filename = get_weights_file_path(config, f"{epoch:02d}")
        torch.save({
            'epoch': epoch,
            'model_state_dict': model.state_dict(),
            'optimizer_state_dict': optimizer.state_dict(),
            'global_step': global_step
        }, model_filename)


if __name__ == '__main__':
    warnings.filterwarnings("ignore")
    config = get_config()
    train_model(config)