File size: 3,557 Bytes
61e1114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import torch
import torchvision
from torch.utils.data import Dataset, DataLoader
import pandas as pd

class BilingualDataset(Dataset):
    def __init__(self, ds, tokenizer_src, tokenizer_tgt, src_lang, tgt_lang, seq_len):
        super().__init__()
        self.seq_len = seq_len

        self.ds = ds
        self.tokenizer_src = tokenizer_src
        self.tokenizer_tgt = tokenizer_tgt
        self.src_lang = src_lang
        self.tgt_lang = tgt_lang

        self.sos_token = torch.tensor([tokenizer_tgt.token_to_id("[SOS]")], dtype=torch.int64)
        self.eos_token = torch.tensor([tokenizer_tgt.token_to_id("[EOS]")], dtype=torch.int64)
        self.pad_token = torch.tensor([tokenizer_tgt.token_to_id("[PAD]")], dtype=torch.int64)

    def __len__(self):
        return len(self.ds)

    def __getitem__(self, idx):
    
     

        
        src_target_pair = self.ds[idx]
        src_text = src_target_pair[self.src_lang]
        tgt_text = src_target_pair[self.tgt_lang]
        

       
     

        # Transform the text into tokens
        enc_input_tokens = self.tokenizer_src.encode(src_text).ids
        dec_input_tokens = self.tokenizer_tgt.encode(tgt_text).ids

        # Add sos, eos and padding to each sentence
        enc_num_padding_tokens = self.seq_len - len(enc_input_tokens) - 2  # We will add <s> and </s>
        # We will only add <s>, and </s> only on the label
        dec_num_padding_tokens = self.seq_len - len(dec_input_tokens) - 1

        # Make sure the number of padding tokens is not negative. If it is, the sentence is too long
        if enc_num_padding_tokens < 0 or dec_num_padding_tokens < 0:
            raise ValueError("Sentence is too long")

        # Add <s> and </s> token
        encoder_input = torch.cat(
            [
                self.sos_token,
                torch.tensor(enc_input_tokens, dtype=torch.int64),
                self.eos_token,
                torch.tensor([self.pad_token] * enc_num_padding_tokens, dtype=torch.int64),
            ],
            dim=0,
        )

        # Add only <s> token
        decoder_input = torch.cat(
            [
                self.sos_token,
                torch.tensor(dec_input_tokens, dtype=torch.int64),
                torch.tensor([self.pad_token] * dec_num_padding_tokens, dtype=torch.int64),
            ],
            dim=0,
        )

        # Add only </s> token
        label = torch.cat(
            [
                torch.tensor(dec_input_tokens, dtype=torch.int64),
                self.eos_token,
                torch.tensor([self.pad_token] * dec_num_padding_tokens, dtype=torch.int64),
            ],
            dim=0,
        )

        # Double check the size of the tensors to make sure they are all seq_len long
        assert encoder_input.size(0) == self.seq_len
        assert decoder_input.size(0) == self.seq_len
        assert label.size(0) == self.seq_len
        return {
            'encoder_input': encoder_input,
            'decoder_input': decoder_input,
            "encoder_mask": (encoder_input != self.pad_token).unsqueeze(0).unsqueeze(0).int(), # (1, 1, seq_len)
            "decoder_mask": (decoder_input != self.pad_token).unsqueeze(0).int() & causal_mask(decoder_input.size(0)), # (1, seq_len) & (1, seq_len, seq_len),
            "label": label,  # (seq_len)
             
            "src_text": src_text,
            "tgt_text": tgt_text,
        }

   
    
def causal_mask(size):
    mask = torch.triu(torch.ones((1, size, size)), diagonal=1).type(torch.int)
    return mask == 0