Spaces:
Runtime error
Runtime error
##Implementation of tranformer from scratch, this implememtation was inspired by Umar Jamir | |
import torch | |
import torch.nn as nn | |
import math | |
import torch.nn.functional as F | |
class InputEmbeddings(nn.Module): | |
def __init__(self, d_model: int, vocab_size: int) -> None: | |
super(InputEmbeddings, self).__init__() | |
self.d_model = d_model | |
self.embedding = nn.Embedding(vocab_size, d_model) | |
def forward(self, x): | |
# (batch, seq_len) --> (batch, seq_len, d_model) | |
# Multiply by sqrt(d_model) to scale the embeddings according to the paper | |
return self.embedding(x) * math.sqrt(self.d_model) | |
class PositionEncoding(nn.Module): | |
def __init__(self, seq_len: int, d_model:int, batch: int) -> None: | |
super(PositionEncoding, self).__init__() | |
# self.seq_len = seq_len | |
# self.d_model = d_model | |
# self.batch = batch | |
self.dropout = nn.Dropout(p=0.1) | |
##initialize the positional encoding with zeros | |
positional_encoding = torch.zeros(seq_len, d_model) | |
##first path of the equation is postion/scaling factor per dimesnsion | |
postion = torch.arange(0, seq_len, dtype=torch.float).unsqueeze(1) | |
## this calculates the scaling term per dimension (512) | |
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) | |
# div_term = torch.pow(10, torch.arange(0,self.d_model, 2).float() *-4/self.d_model) | |
## this calculates the sin values for even indices | |
positional_encoding[:, 0::2] = torch.sin(postion * div_term) | |
## this calculates the cos values for odd indices | |
positional_encoding[:, 1::2] = torch.cos(postion * div_term) | |
positional_encoding = positional_encoding.unsqueeze(0) | |
self.register_buffer('positional_encoding', positional_encoding) | |
def forward(self, x): | |
x = x + (self.positional_encoding[:, :x.shape[1], :]).requires_grad_(False) # (batch, seq_len, d_model) | |
return self.dropout(x) | |
class MultiHeadAttention(nn.Module): | |
def __init__(self, d_model:int, heads: int) -> None: | |
super(MultiHeadAttention,self).__init__() | |
self.head = heads | |
self.head_dim = d_model // heads | |
assert d_model % heads == 0, 'cannot divide d_model by heads' | |
## initialize the query, key and value weights 512*512 | |
self.query_weight = nn.Linear(d_model, d_model, bias=False) | |
self.key_weight = nn.Linear(d_model, d_model,bias=False) | |
self.value_weight = nn.Linear(d_model, d_model,bias=False) | |
self.final_weight = nn.Linear(d_model, d_model, bias=False) | |
self.dropout = nn.Dropout(p=0.1) | |
def self_attention(self,query, key, value, mask,dropout): | |
#splitting query, key and value into heads | |
#this gives us a dimension of batch, num_heads, seq_len by 64. basically 1 sentence is converted to have 8 parts (heads) | |
query = query.view(query.shape[0], query.shape[1],self.head,self.head_dim).transpose(2,1) | |
key = key.view(key.shape[0], key.shape[1],self.head,self.head_dim).transpose(2,1) | |
value = value.view(value.shape[0], value.shape[1],self.head,self.head_dim).transpose(2,1) | |
attention = query @ key.transpose(3,2) | |
attention = attention / math.sqrt(query.shape[-1]) | |
if mask is not None: | |
attention = attention.masked_fill(mask == 0, -1e9) | |
attention = torch.softmax(attention, dim=-1) | |
if dropout is not None: | |
attention = dropout(attention) | |
attention_scores = attention @ value | |
return attention_scores.transpose(2,1).contiguous().view(attention_scores.shape[0], -1, self.head_dim * self.head) | |
def forward(self,query, key, value,mask): | |
## initialize the query, key and value matrices to give us seq_len by 512 | |
query = self.query_weight(query) | |
key = self.key_weight(key) | |
value = self.value_weight(value) | |
attention = MultiHeadAttention.self_attention(self, query, key, value, mask, self.dropout) | |
return self.final_weight(attention) | |
class FeedForward(nn.Module): | |
def __init__(self,d_model:int, d_ff:int ) -> None: | |
super(FeedForward, self).__init__() | |
self.fc1 = nn.Linear(d_model, d_ff) # Fully connected layer 1 | |
self.dropout = nn.Dropout(p=0.1) # Dropout layer | |
self.fc2 = nn.Linear(d_ff, d_model) # Fully connected layer 2 | |
def forward(self,x ): | |
return self.fc2(self.dropout(torch.relu(self.fc1(x)))) | |
class ProjectionLayer(nn.Module): | |
def __init__(self, d_model:int, vocab_size:int) : | |
super(ProjectionLayer, self).__init__() | |
self.fc = nn.Linear(d_model, vocab_size) | |
def forward(self, x): | |
x = self.fc(x) | |
return torch.log_softmax(x, dim=-1) | |
class EncoderBlock(nn.Module): | |
def __init__(self, d_model:int, head:int, d_ff:int) -> None: | |
super(EncoderBlock, self).__init__() | |
self.multiheadattention = MultiHeadAttention(d_model,head) | |
self.layer_norm1 = nn.LayerNorm(d_model) | |
self.dropout1 = nn.Dropout(p=0.1) | |
self.feedforward = FeedForward(d_model, d_ff) | |
self.layer_norm2 = nn.LayerNorm(d_model) | |
self.layer_norm3 = nn.LayerNorm(d_model) | |
self.dropout2 = nn.Dropout(p=0.1) | |
def forward(self, x, src_mask): | |
# Self-attention block | |
norm = self.layer_norm1(x) | |
attention = self.multiheadattention(norm, norm, norm, src_mask) | |
x = (x + self.dropout1(attention)) | |
# Feedforward block | |
norm2 = self.layer_norm2(x) | |
ff = self.feedforward(x) | |
return x + self.dropout2(ff) | |
class Encoder(nn.Module): | |
def __init__(self, number_of_block:int, d_model:int, head:int, d_ff:int) -> None: | |
super(Encoder, self).__init__() | |
self.norm = nn.LayerNorm(d_model) | |
# Use nn.ModuleList to store the EncoderBlock instances | |
self.encoders = nn.ModuleList([EncoderBlock(d_model, head, d_ff) | |
for _ in range(number_of_block)]) | |
def forward(self, x, src_mask): | |
for encoder_block in self.encoders: | |
x = encoder_block(x, src_mask) | |
return self.norm(x) | |
class DecoderBlock(nn.Module): | |
def __init__(self, d_model:int, head:int, d_ff:int) -> None: | |
super(DecoderBlock, self).__init__() | |
self.head_dim = d_model // head | |
self.multiheadattention = MultiHeadAttention(d_model, head) | |
self.crossattention = MultiHeadAttention(d_model, head) | |
self.layer_norm1 = nn.LayerNorm(d_model) | |
self.dropout1 = nn.Dropout(p=0.1) | |
self.feedforward = FeedForward(d_model,d_ff) | |
self.layer_norm2 = nn.LayerNorm(d_model) | |
self.layer_norm3 = nn.LayerNorm(d_model) | |
self.layer_norm4 = nn.LayerNorm(d_model) | |
self.dropout2 = nn.Dropout(p=0.1) | |
self.dropout3 = nn.Dropout(p=0.1) | |
def forward(self, x, src_mask, tgt_mask, encoder_output): | |
#Self-attention block | |
norm = self.layer_norm1(x) | |
attention = self.multiheadattention(norm, norm, norm, tgt_mask) | |
x = (x + self.dropout1(attention)) | |
# Cross-attention block | |
norm2 = self.layer_norm2(x) | |
cross_attention = self.crossattention(norm, encoder_output, encoder_output, src_mask) | |
x = (x + self.dropout2(cross_attention)) | |
# Feedforward block | |
norm3 = self.layer_norm3(x) | |
ff = self.feedforward(norm3) | |
return x + self.dropout3(ff) | |
class Decoder(nn.Module): | |
def __init__(self, number_of_block:int,d_model:int, head:int, d_ff:int) -> None: | |
super(Decoder, self).__init__() | |
self.norm = nn.LayerNorm(d_model) | |
self.decoders = nn.ModuleList([DecoderBlock(d_model, head, d_ff) | |
for _ in range(number_of_block)]) | |
def forward(self, x, src_mask, tgt_mask, encoder_output): | |
for decoder_block in self.decoders: | |
x = decoder_block(x, src_mask, tgt_mask, encoder_output) | |
return self.norm(x) | |
class Transformer(nn.Module): | |
def __init__(self, seq_len:int, batch:int, d_model:int,target_vocab_size:int, source_vocab_size:int, head: int = 8, d_ff: int = 2048, number_of_block: int = 6) -> None: | |
super(Transformer, self).__init__() | |
self.encoder = Encoder(number_of_block,d_model, head, d_ff ) | |
self.decoder = Decoder(number_of_block, d_model, head, d_ff ) | |
# encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8, batch_first=True) | |
# self.encoder = nn.TransformerEncoder(encoder_layer, num_layers=6) | |
# decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8, batch_first=True) | |
# self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=6) | |
self.projection = ProjectionLayer(d_model, target_vocab_size) | |
self.source_embedding = InputEmbeddings(d_model,source_vocab_size ) | |
self.target_embedding = InputEmbeddings(d_model,target_vocab_size) | |
self.positional_encoding = PositionEncoding(seq_len, d_model, batch) | |
def encode(self,x, src_mask): | |
x = self.source_embedding(x) | |
x = self.positional_encoding(x) | |
return self.encoder(x, src_mask) | |
def decode(self,x, src_mask, tgt_mask, encoder_output): | |
x = self.target_embedding(x) | |
x = self.positional_encoding(x) | |
return self.decoder(x, src_mask, tgt_mask, encoder_output,) | |
def project(self, x): | |
return self.projection(x) | |
def build_transformer(seq_len, batch, target_vocab_size, source_vocab_size, d_model)-> Transformer: | |
transformer = Transformer(seq_len, batch, d_model, target_vocab_size, source_vocab_size ) | |
#Initialize the parameters | |
for p in transformer.parameters(): | |
if p.dim() > 1: | |
nn.init.xavier_uniform_(p) | |
return transformer | |
# import torch | |
# import torch.nn as nn | |
# import math | |
# class LayerNormalization(nn.Module): | |
# def __init__(self, eps:float=10**-6) -> None: | |
# super().__init__() | |
# self.eps = eps | |
# self.alpha = nn.Parameter(torch.ones(1)) # alpha is a learnable parameter | |
# self.bias = nn.Parameter(torch.zeros(1)) # bias is a learnable parameter | |
# def forward(self, x): | |
# # x: (batch, seq_len, hidden_size) | |
# # Keep the dimension for broadcasting | |
# mean = x.mean(dim = -1, keepdim = True) # (batch, seq_len, 1) | |
# # Keep the dimension for broadcasting | |
# std = x.std(dim = -1, keepdim = True) # (batch, seq_len, 1) | |
# # eps is to prevent dividing by zero or when std is very small | |
# return self.alpha * (x - mean) / (std + self.eps) + self.bias | |
# class FeedForwardBlock(nn.Module): | |
# def __init__(self, d_model: int, d_ff: int, dropout: float) -> None: | |
# super().__init__() | |
# self.linear_1 = nn.Linear(d_model, d_ff) # w1 and b1 | |
# self.dropout = nn.Dropout(dropout) | |
# self.linear_2 = nn.Linear(d_ff, d_model) # w2 and b2 | |
# def forward(self, x): | |
# # (batch, seq_len, d_model) --> (batch, seq_len, d_ff) --> (batch, seq_len, d_model) | |
# return self.linear_2(self.dropout(torch.relu(self.linear_1(x)))) | |
# class InputEmbeddings(nn.Module): | |
# def __init__(self, d_model: int, vocab_size: int) -> None: | |
# super().__init__() | |
# self.d_model = d_model | |
# self.vocab_size = vocab_size | |
# self.embedding = nn.Embedding(vocab_size, d_model) | |
# def forward(self, x): | |
# # (batch, seq_len) --> (batch, seq_len, d_model) | |
# # Multiply by sqrt(d_model) to scale the embeddings according to the paper | |
# return self.embedding(x) * math.sqrt(self.d_model) | |
# class PositionalEncoding(nn.Module): | |
# def __init__(self, d_model: int, seq_len: int, dropout: float) -> None: | |
# super().__init__() | |
# self.d_model = d_model | |
# self.seq_len = seq_len | |
# self.dropout = nn.Dropout(dropout) | |
# # Create a matrix of shape (seq_len, d_model) | |
# pe = torch.zeros(seq_len, d_model) | |
# # Create a vector of shape (seq_len) | |
# position = torch.arange(0, seq_len, dtype=torch.float).unsqueeze(1) # (seq_len, 1) | |
# # Create a vector of shape (d_model) | |
# div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) # (d_model / 2) | |
# # Apply sine to even indices | |
# pe[:, 0::2] = torch.sin(position * div_term) # sin(position * (10000 ** (2i / d_model)) | |
# # Apply cosine to odd indices | |
# pe[:, 1::2] = torch.cos(position * div_term) # cos(position * (10000 ** (2i / d_model)) | |
# # Add a batch dimension to the positional encoding | |
# pe = pe.unsqueeze(0) # (1, seq_len, d_model) | |
# # Register the positional encoding as a buffer | |
# pe = pe.transpose(1,2) | |
# self.register_buffer('pe', pe) | |
# def forward(self, x): | |
# x = x + (self.pe[:, :x.shape[1], :]).requires_grad_(False) # (batch, seq_len, d_model) | |
# return self.dropout(x) | |
# class ResidualConnection(nn.Module): | |
# def __init__(self, dropout: float) -> None: | |
# super().__init__() | |
# self.dropout = nn.Dropout(dropout) | |
# self.norm = LayerNormalization() | |
# def forward(self, x, sublayer): | |
# return x + self.dropout(sublayer(self.norm(x))) | |
# class MultiHeadAttentionBlock(nn.Module): | |
# def __init__(self, d_model: int, h: int, dropout: float) -> None: | |
# super().__init__() | |
# self.d_model = d_model # Embedding vector size | |
# self.h = h # Number of heads | |
# # Make sure d_model is divisible by h | |
# assert d_model % h == 0, "d_model is not divisible by h" | |
# self.d_k = d_model // h # Dimension of vector seen by each head | |
# self.w_q = nn.Linear(d_model, d_model) # Wq | |
# self.w_k = nn.Linear(d_model, d_model) # Wk | |
# self.w_v = nn.Linear(d_model, d_model) # Wv | |
# self.w_o = nn.Linear(d_model, d_model) # Wo | |
# self.dropout = nn.Dropout(dropout) | |
# @staticmethod | |
# def attention(query, key, value, mask, dropout: nn.Dropout): | |
# d_k = query.shape[-1] | |
# # Just apply the formula from the paper | |
# # (batch, h, seq_len, d_k) --> (batch, h, seq_len, seq_len) | |
# attention_scores = (query @ key.transpose(-2, -1)) / math.sqrt(d_k) | |
# if mask is not None: | |
# # Write a very low value (indicating -inf) to the positions where mask == 0 | |
# attention_scores.masked_fill_(mask == 0, -1e9) | |
# attention_scores = attention_scores.softmax(dim=-1) # (batch, h, seq_len, seq_len) # Apply softmax | |
# if dropout is not None: | |
# attention_scores = dropout(attention_scores) | |
# # (batch, h, seq_len, seq_len) --> (batch, h, seq_len, d_k) | |
# # return attention scores which can be used for visualization | |
# return (attention_scores @ value), attention_scores | |
# def forward(self, q, k, v, mask): | |
# query = self.w_q(q) # (batch, seq_len, d_model) --> (batch, seq_len, d_model) | |
# key = self.w_k(k) # (batch, seq_len, d_model) --> (batch, seq_len, d_model) | |
# value = self.w_v(v) # (batch, seq_len, d_model) --> (batch, seq_len, d_model) | |
# # (batch, seq_len, d_model) --> (batch, seq_len, h, d_k) --> (batch, h, seq_len, d_k) | |
# query = query.view(query.shape[0], query.shape[1], self.h, self.d_k).transpose(1, 2) | |
# key = key.view(key.shape[0], key.shape[1], self.h, self.d_k).transpose(1, 2) | |
# value = value.view(value.shape[0], value.shape[1], self.h, self.d_k).transpose(1, 2) | |
# # Calculate attention | |
# x, self.attention_scores = MultiHeadAttentionBlock.attention(query, key, value, mask, self.dropout) | |
# # Combine all the heads together | |
# # (batch, h, seq_len, d_k) --> (batch, seq_len, h, d_k) --> (batch, seq_len, d_model) | |
# x = x.transpose(1, 2).contiguous().view(x.shape[0], -1, self.h * self.d_k) | |
# # Multiply by Wo | |
# # (batch, seq_len, d_model) --> (batch, seq_len, d_model) | |
# return self.w_o(x) | |
# # class EncoderBlock(nn.Module): | |
# # def __init__(self, self_attention_block: MultiHeadAttentionBlock, feed_forward_block: FeedForwardBlock, dropout: float) -> None: | |
# # super().__init__() | |
# # self.self_attention_block = self_attention_block | |
# # self.feed_forward_block = feed_forward_block | |
# # self.residual_connections = nn.ModuleList([ResidualConnection(dropout) for _ in range(2)]) | |
# # def forward(self, x, src_mask): | |
# # x = self.residual_connections[0](x, lambda x: self.self_attention_block(x, x, x, src_mask)) | |
# # x = self.residual_connections[1](x, self.feed_forward_block) | |
# # return x | |
# # class Encoder(nn.Module): | |
# # def __init__(self, layers: nn.ModuleList) -> None: | |
# # super().__init__() | |
# # self.layers = layers | |
# # self.norm = LayerNormalization() | |
# # def forward(self, x, mask): | |
# # for layer in self.layers: | |
# # x = layer(x, mask) | |
# # return self.norm(x) | |
# class EncoderBlock(nn.Module): | |
# def __init__(self, d_model:int, head:int, d_ff:int) -> None: | |
# super(EncoderBlock, self).__init__() | |
# self.multiheadattention = MultiHeadAttentionBlock(d_model,head, 0.1) | |
# self.layer_norm1 = nn.LayerNorm(d_model) | |
# self.dropout1 = nn.Dropout(p=0.1) | |
# self.feedforward = FeedForwardBlock(d_model, d_ff, 0.1) | |
# self.layer_norm2 = nn.LayerNorm(d_model) | |
# self.layer_norm3 = nn.LayerNorm(d_model) | |
# self.dropout2 = nn.Dropout(p=0.1) | |
# def forward(self, x, src_mask): | |
# # Self-attention block | |
# norm = self.layer_norm1(x) | |
# attention = self.multiheadattention(norm, norm, norm, src_mask) | |
# x = (x + self.dropout1(attention)) | |
# # Feedforward block | |
# norm2 = self.layer_norm2(x) | |
# ff = self.feedforward(x) | |
# return x + self.dropout2(ff) | |
# class Encoder(nn.Module): | |
# def __init__(self, number_of_block:int, d_model:int, head:int, d_ff:int) -> None: | |
# super(Encoder, self).__init__() | |
# self.norm = nn.LayerNorm(d_model) | |
# # Use nn.ModuleList to store the EncoderBlock instances | |
# self.encoders = nn.ModuleList([EncoderBlock(d_model, head, d_ff) | |
# for _ in range(number_of_block)]) | |
# def forward(self, x, src_mask): | |
# for encoder_block in self.encoders: | |
# x = encoder_block(x, src_mask) | |
# return self.norm(x) | |
# class ProjectionLayer(nn.Module): | |
# def __init__(self, d_model, vocab_size) -> None: | |
# super().__init__() | |
# self.proj = nn.Linear(d_model, vocab_size) | |
# def forward(self, x) -> None: | |
# # (batch, seq_len, d_model) --> (batch, seq_len, vocab_size) | |
# return torch.log_softmax(self.proj(x), dim = -1) | |
# class DecoderBlock(nn.Module): | |
# def __init__(self, d_model:int, head:int, d_ff:int) -> None: | |
# super(DecoderBlock, self).__init__() | |
# self.head_dim = d_model // head | |
# self.multiheadattention = MultiHeadAttentionBlock(d_model, head, 0.1) | |
# self.crossattention = MultiHeadAttentionBlock(d_model, head, 0.1) | |
# self.layer_norm1 = nn.LayerNorm(d_model) | |
# self.dropout1 = nn.Dropout(p=0.1) | |
# self.feedforward = FeedForwardBlock(d_model,d_ff, 0.1) | |
# self.layer_norm2 = nn.LayerNorm(d_model) | |
# self.layer_norm3 = nn.LayerNorm(d_model) | |
# self.layer_norm4 = nn.LayerNorm(d_model) | |
# self.dropout2 = nn.Dropout(p=0.1) | |
# self.dropout3 = nn.Dropout(p=0.1) | |
# def forward(self, x, src_mask, tgt_mask, encoder_output): | |
# # Self-attention block | |
# norm = self.layer_norm1(x) | |
# attention = self.multiheadattention(norm, norm, norm, tgt_mask) | |
# x = (x + self.dropout1(attention)) | |
# # Cross-attention block | |
# norm2 = self.layer_norm2(x) | |
# cross_attention = self.crossattention(norm, encoder_output, encoder_output, src_mask) | |
# x = (x + self.dropout2(cross_attention)) | |
# # Feedforward block | |
# norm3 = self.layer_norm3(x) | |
# ff = self.feedforward(norm3) | |
# return x + self.dropout3(ff) | |
# class Decoder(nn.Module): | |
# def __init__(self, number_of_block:int,d_model:int, head:int, d_ff:int) -> None: | |
# super(Decoder, self).__init__() | |
# self.norm = nn.LayerNorm(d_model) | |
# self.decoders = nn.ModuleList([DecoderBlock(d_model, head, d_ff) | |
# for _ in range(number_of_block)]) | |
# def forward(self, x, src_mask, tgt_mask, encoder_output): | |
# for decoder_block in self.decoders: | |
# x = decoder_block(x, src_mask, tgt_mask, encoder_output) | |
# return self.norm(x) | |
# class Transformer(nn.Module): | |
# def __init__(self, seq_len:int, batch:int, d_model:int,target_vocab_size:int, source_vocab_size:int, head: int = 8, d_ff: int = 2048, number_of_block: int = 6, dropout: float = 0.1) -> None: | |
# super(Transformer, self).__init__() | |
# self.encoder = Encoder(number_of_block,d_model, head, d_ff ) | |
# self.decoder = Decoder(number_of_block, d_model, head, d_ff ) | |
# # encoder_self_attention_block = MultiHeadAttentionBlock(d_model, head, dropout) | |
# # feed_forward_block = FeedForwardBlock(d_model, d_ff, dropout) | |
# # self.encoder = Encoder(nn.ModuleList([EncoderBlock(encoder_self_attention_block, feed_forward_block, dropout) for _ in range(number_of_block)])) | |
# # decoder_self_attention_block = MultiHeadAttentionBlock(d_model, head, dropout) | |
# # decoder_cross_attention_block = MultiHeadAttentionBlock(d_model, head, dropout) | |
# # feed_forward_block = FeedForwardBlock(d_model, d_ff, dropout) | |
# # self.decoder = Decoder(nn.ModuleList([DecoderBlock(decoder_self_attention_block, decoder_cross_attention_block, feed_forward_block, dropout) for _ in range(number_of_block) ])) | |
# self.projection = ProjectionLayer(d_model, target_vocab_size) | |
# self.source_embedding = InputEmbeddings(d_model,source_vocab_size ) | |
# self.target_embedding = InputEmbeddings(d_model,target_vocab_size) | |
# self.positional_encoding = PositionalEncoding(seq_len, d_model, dropout) | |
# def encode(self,x, src_mask): | |
# x = self.source_embedding(x) | |
# x = self.positional_encoding(x) | |
# return self.encoder(x, src_mask) | |
# def decode(self,encoder_output, src_mask, x, tgt_mask): | |
# x = self.target_embedding(x) | |
# x = self.positional_encoding(x) | |
# return self.decoder(x, src_mask, tgt_mask, encoder_output) | |
# def project(self, x): | |
# return self.projection(x) | |
# def build_transformer(seq_len, batch, target_vocab_size, source_vocab_size, d_model)-> Transformer: | |
# transformer = Transformer(seq_len, batch, d_model, target_vocab_size, source_vocab_size ) | |
# #Initialize the parameters | |
# for p in transformer.parameters(): | |
# if p.dim() > 1: | |
# nn.init.xavier_uniform_(p) | |
# return transformer |