import torch from model import build_transformer from train import greedy_decode, get_model, get_or_build_tokenizer from config import get_config, get_weights_file_path from tokenizers import Tokenizer from pathlib import Path config = get_config() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def process_text(config, src_text, tokenizer_src, tokenizer_tgt, src_lang, tgt_lang, seq_len): seq_len = seq_len # ds = ds tokenizer_src = tokenizer_src tokenizer_tgt = tokenizer_tgt src_lang = src_lang tgt_lang = tgt_lang sos_token = torch.tensor([tokenizer_tgt.token_to_id("[SOS]")], dtype=torch.int64) eos_token = torch.tensor([tokenizer_tgt.token_to_id("[EOS]")], dtype=torch.int64) pad_token = torch.tensor([tokenizer_tgt.token_to_id("[PAD]")], dtype=torch.int64) # Transform the text into tokens enc_input_tokens = tokenizer_src.encode(src_text).ids # dec_input_tokens = self.tokenizer_tgt.encode(tgt_text).ids # Add sos, eos and padding to each sentence enc_num_padding_tokens = seq_len - len(enc_input_tokens) - 2 # We will add and # # We will only add , and only on the label # dec_num_padding_tokens = self.seq_len - len(dec_input_tokens) - 1 # Make sure the number of padding tokens is not negative. If it is, the sentence is too long if enc_num_padding_tokens < 0: raise ValueError("Sentence is too long") # Add and token encoder_input = torch.cat( [ sos_token, torch.tensor(enc_input_tokens, dtype=torch.int64), eos_token, torch.tensor([pad_token] * enc_num_padding_tokens, dtype=torch.int64), ], dim=0, ) # # Add only token # decoder_input = torch.cat( # [ # self.sos_token, # torch.tensor(dec_input_tokens, dtype=torch.int64), # torch.tensor([self.pad_token] * dec_num_padding_tokens, dtype=torch.int64), # ], # dim=0, # ) # # Add only token # label = torch.cat( # [ # torch.tensor(dec_input_tokens, dtype=torch.int64), # self.eos_token, # torch.tensor([self.pad_token] * dec_num_padding_tokens, dtype=torch.int64), # ], # dim=0, # ) # Double check the size of the tensors to make sure they are all seq_len long assert encoder_input.size(0) == seq_len # assert decoder_input.size(0) == seq_len # assert label.size(0) == seq_len return { 'encoder_input': encoder_input, # 'decoder_input': decoder_input, "encoder_mask": (encoder_input != pad_token).unsqueeze(0).unsqueeze(0).int(), # (1, 1, seq_len) # "decoder_mask": (decoder_input != self.pad_token).unsqueeze(0).int() & causal_mask(decoder_input.size(0)), # (1, seq_len) & (1, seq_len, seq_len), # "label": label, # (seq_len) # "src_text": src_text, # "tgt_text": tgt_text, } def causal_mask(size): mask = torch.triu(torch.ones((1, size, size)), diagonal=1).type(torch.int) return mask == 0 def infer(text, config): tokenizer_src = Tokenizer.from_file(str(Path(config['tokenizer_file'].format(config['lang_src'])))) tokenizer_tgt = Tokenizer.from_file(str(Path(config['tokenizer_file'].format(config['lang_tgt'])))) model = get_model(config, tokenizer_src.get_vocab_size(), tokenizer_tgt.get_vocab_size()) state = torch.load('tmodel_36.pt', map_location=torch.device('cpu')) model.load_state_dict(state['model_state_dict']) model.eval() with torch.no_grad(): processed_text = process_text(config, text, tokenizer_src, tokenizer_tgt, config['lang_src'], config['lang_tgt'], config['seq_len']) encoder_input = processed_text['encoder_input'] encoder_mask = processed_text['encoder_mask'] model_out = greedy_decode(model, encoder_input, encoder_mask, tokenizer_src, tokenizer_tgt, config['seq_len'], device) model_out_text = tokenizer_tgt.decode(model_out.detach().cpu().numpy()) return model_out_text import streamlit as st st.title("English to Hausa Translation") user_input = st.text_input("Enter your text:") if user_input: result = infer(user_input, config) st.write("Inference Result:", result)