Spaces:
Running
Running
File size: 15,934 Bytes
22ca2be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
import torch
import torch.nn as nn
import math
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
from torchvision.transforms.functional import to_pil_image, to_tensor
import time
import numpy as np
from matplotlib.image import imread
from transformers import ViTFeatureExtractor
from io import BytesIO
from base64 import b64decode
import base64
from transformers import ViTImageProcessor, ViTModel
## code from @jankrepl on github
class PretrainedVit():
def __init__(self):
self.model = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k')
def forward(self, x):
self.model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
self.model.config.output_hidden_states = True
outputs = self.model(x)
# print(outputs)
last_hidden_states = outputs.hidden_states
return list(last_hidden_states)
class PatchEmbed(nn.Module):
"""Split image into patches and then embed them.
Parameters
----------
img_size : int
Size of the image (it is a square).
patch_size : int
Size of the patch (it is a square).
in_chans : int
Number of input channels.
embed_dim : int
The emmbedding dimension.
Attributes
----------
n_patches : int
Number of patches inside of our image.
proj : nn.Conv2d
Convolutional layer that does both the splitting into patches
and their embedding.
"""
def __init__(self, img_size, patch_size, in_chans=3, embed_dim=1024, num_registers = 6):
super().__init__()
self.img_size = img_size
self.patch_size = patch_size
self.norm = RMSNorm()
self.n_patches = (img_size // patch_size) ** 2
self.pos_embed = nn.Parameter(
torch.zeros(1, self.n_patches+1+num_registers, embed_dim)
)
# Adding CLS token as a learnable parameter
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.register_token = nn.Parameter(torch.zeros(num_registers, embed_dim))
self.proj = nn.Conv2d(
in_chans,
embed_dim,
kernel_size=patch_size,
stride=patch_size,
)
def forward(self, x):
"""Run forward pass.
Parameters
----------
x : torch.Tensor
Shape `(n_samples, in_chans, img_size, img_size)`.
Returns
-------
torch.Tensor
Shape `(n_samples, n_patches, embed_dim)`.
"""
x = self.proj(x) # (n_samples, embed_dim, n_patches ** 0.5, n_patches ** 0.5)
x = x.flatten(2) # (n_samples, embed_dim, n_patches)
x = x.transpose(1, 2) # (n_samples, n_patches, embed_dim)
batch_size = x.shape[0]
cls_tokens = self.cls_token.expand(batch_size, -1, -1) # Expand CLS tokens for the batch
x = torch.cat([cls_tokens, x], dim=1)
# x: (n_samples, n_patches + 1 + num_registers, embed_dimension) add register tokens
register_tokens = self.register_token.unsqueeze(0).expand(batch_size, -1, -1)
x = torch.cat([x, register_tokens], dim=1)
X = self.norm(x)
x = x + self.pos_embed # Learnable pos embed -> (n_samples, n_patches_embed_dim)
return x
## not used
class RMSNorm(nn.Module):
def __init__(self, dim: int = 1024, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.dim = dim
# The gamma parameter
self.weight = nn.Parameter(torch.ones(self.dim))
def _norm(self, x: torch.Tensor):
# (B, Seq_Len, Dim) * (B, Seq_Len, 1) = (B, Seq_Len, Dim)
# rsqrt: 1 / sqrt(x)
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x: torch.Tensor):
# (Dim) * (B, Seq_Len, Dim) = (B, Seq_Len, Dim)
return self.weight * self._norm(x.float()).type_as(x)
class LayerNormalization(nn.Module):
def __init__(self, eps:float=1e-12) -> None:
super().__init__()
self.eps = eps
self.alpha = nn.Parameter(torch.ones(1)) # alpha is a learnable parameter
self.bias = nn.Parameter(torch.zeros(1)) # bias is a learnable parameter
def forward(self, x):
# x: (batch, seq_len, hidden_size)
# Keep the dimension for broadcasting
mean = x.mean(dim = -1, keepdim = True) # (batch, seq_len, 1)
# Keep the dimension for broadcasting
std = x.std(dim = -1, keepdim = True) # (batch, seq_len, 1)
# eps is to prevent dividing by zero or when std is very small
# print(f'mean shape {mean.squeeze(-1).shape}')
return self.alpha * (x - mean) / (std + self.eps) + self.bias
class FeedForwardBlock(nn.Module):
def __init__(self, d_model: int, d_ff: int, dropout: float) -> None:
super().__init__()
self.linear_1 = nn.Linear(d_model, d_ff) # w1 and b1
self.dropout = nn.Dropout(dropout)
self.linear_2 = nn.Linear(d_ff, d_model) # w2 and b2
def forward(self, x):
# (batch, seq_len, d_model) --> (batch, seq_len, d_ff) --> (batch, seq_len, d_model)
return self.linear_2(self.dropout(torch.relu(self.linear_1(x))))
class InputEmbeddings(nn.Module):
def __init__(self, d_model: int, vocab_size: int) -> None:
super().__init__()
self.d_model = d_model
self.vocab_size = vocab_size
self.embedding = nn.Embedding(vocab_size, d_model)
def forward(self, x):
# (batch, seq_len) --> (batch, seq_len, d_model)
# Multiply by sqrt(d_model) to scale the embeddings according to the paper
return self.embedding(x) * math.sqrt(self.d_model)
class PositionalEncoding(nn.Module):
def __init__(self, d_model: int, seq_len: int, dropout: float) -> None:
super().__init__()
self.d_model = d_model
self.seq_len = seq_len
self.dropout = nn.Dropout(dropout)
# Create a matrix of shape (seq_len, d_model)
pe = torch.zeros(seq_len, d_model)
# Create a vector of shape (seq_len)
position = torch.arange(0, seq_len, dtype=torch.float).unsqueeze(1) # (seq_len, 1)
# Create a vector of shape (d_model)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) # (d_model / 2)
# Apply sine to even indices
pe[:, 0::2] = torch.sin(position * div_term) # sin(position * (10000 ** (2i / d_model))
# Apply cosine to odd indices
pe[:, 1::2] = torch.cos(position * div_term) # cos(position * (10000 ** (2i / d_model))
# Add a batch dimension to the positional encoding
pe = pe.unsqueeze(0) # (1, seq_len, d_model)
# Register the positional encoding as a buffer
self.register_buffer('pe', pe)
def forward(self, x):
x = x + (self.pe[:, :x.shape[1], :]).requires_grad_(False) # (batch, seq_len, d_model)
return self.dropout(x)
class ResidualConnection(nn.Module):
def __init__(self, dropout: float) -> None:
super().__init__()
self.dropout = nn.Dropout(dropout)
self.norm = LayerNormalization()
def forward(self, x, sublayer):
return x + self.dropout(sublayer(self.norm(x)))
class MultiHeadAttentionBlock(nn.Module):
def __init__(self, d_model: int, h: int, dropout: float) -> None:
super().__init__()
self.d_model = d_model # Embedding vector size
self.h = h # Number of heads
# Make sure d_model is divisible by h
assert d_model % h == 0, "d_model is not divisible by h"
self.d_k = d_model // h # Dimension of vector seen by each head
self.w_q = nn.Linear(d_model, d_model) # Wq
self.w_k = nn.Linear(d_model, d_model) # Wk
self.w_v = nn.Linear(d_model, d_model) # Wv
self.w_o = nn.Linear(d_model, d_model) # Wo
self.dropout = nn.Dropout(dropout)
@staticmethod
def attention(query, key, value, mask, dropout: nn.Dropout):
d_k = query.shape[-1]
# Just apply the formula from the paper
# (batch, h, seq_len, d_k) --> (batch, h, seq_len, seq_len)
attention_scores = (query @ key.transpose(-2, -1)) / math.sqrt(d_k)
if mask is not None:
# Write a very low value (indicating -inf) to the positions where mask == 0
attention_scores.masked_fill_(mask == 0, -1e9)
attention_scores = attention_scores.softmax(dim=-1) # (batch, h, seq_len, seq_len) # Apply softmax
if dropout is not None:
attention_scores = dropout(attention_scores)
# (batch, h, seq_len, seq_len) --> (batch, h, seq_len, d_k)
# return attention scores which can be used for visualization
# attention_viz(attention_scores)
return (attention_scores @ value), attention_scores
def forward(self, q, k, v, mask, is_cross=False):
query = self.w_q(q) # (batch, seq_len, d_model) --> (batch, seq_len, d_model)
key = self.w_k(k) # (batch, seq_len, d_model) --> (batch, seq_len, d_model)
value = self.w_v(v) # (batch, seq_len, d_model) --> (batch, seq_len, d_model)
# (batch, seq_len, d_model) --> (batch, seq_len, h, d_k) --> (batch, h, seq_len, d_k)
query = query.view(query.shape[0], query.shape[1], self.h, self.d_k).transpose(1, 2)
key = key.view(key.shape[0], key.shape[1], self.h, self.d_k).transpose(1, 2)
value = value.view(value.shape[0], value.shape[1], self.h, self.d_k).transpose(1, 2)
# Calculate attention
x, self.attention_scores = MultiHeadAttentionBlock.attention(query, key, value, mask, self.dropout)
if is_cross:
attention_viz(self.attention_scores)
# Combine all the heads together
# (batch, h, seq_len, d_k) --> (batch, seq_len, h, d_k) --> (batch, seq_len, d_model)
x = x.transpose(1, 2).contiguous().view(x.shape[0], -1, self.h * self.d_k)
# Multiply by Wo
# (batch, seq_len, d_model) --> (batch, seq_len, d_model)
return self.w_o(x)
class EncoderBlock(nn.Module):
def __init__(self, self_attention_block: MultiHeadAttentionBlock, feed_forward_block: FeedForwardBlock, dropout: float, layer: int ) -> None:
super().__init__()
self.self_attention_block = self_attention_block
self.feed_forward_block = feed_forward_block
self.residual_connections = nn.ModuleList([ResidualConnection(dropout) for _ in range(2)])
self.layer = layer
def forward(self, x, src_mask, index):
# print(x.shape)
# print(self.layer)
out = x[11]
# out = self.residual_connections[1](out, self.feed_forward_block)
return out
class Encoder(nn.Module):
def __init__(self, layers: nn.ModuleList) -> None:
super().__init__()
self.layers = layers
self.norm = LayerNormalization()
def forward(self, x, mask):
for index, layer in enumerate(self.layers):
# print(index)
x = layer(x, mask, index)
break
return self.norm(x)
class DecoderBlock(nn.Module):
def __init__(self, self_attention_block: MultiHeadAttentionBlock, cross_attention_block: MultiHeadAttentionBlock, feed_forward_block: FeedForwardBlock, dropout: float) -> None:
super().__init__()
self.self_attention_block = self_attention_block
self.cross_attention_block = cross_attention_block
self.feed_forward_block = feed_forward_block
self.residual_connections = nn.ModuleList([ResidualConnection(dropout) for _ in range(3)])
def forward(self, x, encoder_output, src_mask, tgt_mask):
x = self.residual_connections[0](x, lambda x: self.self_attention_block(x, x, x, tgt_mask))
x = self.residual_connections[1](x, lambda x: self.cross_attention_block(x, encoder_output, encoder_output, src_mask))
x = self.residual_connections[2](x, self.feed_forward_block)
return x
class Decoder(nn.Module):
def __init__(self, layers: nn.ModuleList) -> None:
super().__init__()
self.layers = layers
self.norm = LayerNormalization()
def forward(self, x, encoder_output, src_mask, tgt_mask):
for layer in self.layers:
x = layer(x, encoder_output, src_mask, tgt_mask)
return self.norm(x)
class ProjectionLayer(nn.Module):
def __init__(self, d_model, vocab_size) -> None:
super().__init__()
self.proj = nn.Linear(d_model, vocab_size)
def forward(self, x) -> None:
# (batch, seq_len, d_model) --> (batch, seq_len, vocab_size)
return torch.log_softmax(self.proj(x), dim = -1)
class Transformer(nn.Module):
def __init__(self, encoder: Encoder, decoder: Decoder, tgt_embed: InputEmbeddings, tgt_pos: PositionalEncoding, projection_layer: ProjectionLayer, att: PretrainedVit) -> None:
super().__init__()
self.encoder = encoder
self.decoder = decoder
# self.src_embed = src_embed
self.tgt_embed = tgt_embed
# self.src_pos = src_pos
self.tgt_pos = tgt_pos
self.projection_layer = projection_layer
self.patch_embed = PatchEmbed(img_size=224, patch_size=14)
self.att = att
def encode(self, src, src_mask):
# (batch, seq_len, d_model)
attention_list = self.att.forward(src)
# src = self.src_pos(src)
return self.encoder(attention_list[1:], src_mask)
def decode(self, encoder_output: torch.Tensor, src_mask: torch.Tensor, tgt: torch.Tensor, tgt_mask: torch.Tensor):
# (batch, seq_len, d_model)
tgt = self.tgt_embed(tgt)
tgt = self.tgt_pos(tgt)
return self.decoder(tgt, encoder_output, src_mask, tgt_mask)
def project(self, x):
# (batch, seq_len, vocab_size)
return self.projection_layer(x)
def build_transformer(tgt_vocab_size: int, tgt_seq_len: int, d_model: int=768, N: int=10, h: int=12, dropout: float=0.1, d_ff: int=3072) -> Transformer:
# Create the embedding layers
tgt_embed = InputEmbeddings(d_model, tgt_vocab_size)
# Create the positional encoding layers
# src_pos = PositionalEncoding(d_model, src_seq_len, dropout)
tgt_pos = PositionalEncoding(d_model, tgt_seq_len, dropout)
#attention from pretrained vit
att = PretrainedVit()
# Create the encoder blocks
encoder_blocks = []
for _ in range(N):
print()
encoder_self_attention_block = MultiHeadAttentionBlock(d_model, h, dropout)
feed_forward_block = FeedForwardBlock(d_model, d_ff, dropout)
encoder_block = EncoderBlock(encoder_self_attention_block, feed_forward_block, dropout, _)
encoder_blocks.append(encoder_block)
# Create the decoder blocks
decoder_blocks = []
for _ in range(N):
decoder_self_attention_block = MultiHeadAttentionBlock(d_model, h, dropout)
decoder_cross_attention_block = MultiHeadAttentionBlock(d_model, h, dropout)
feed_forward_block = FeedForwardBlock(d_model, d_ff, dropout)
decoder_block = DecoderBlock(decoder_self_attention_block, decoder_cross_attention_block, feed_forward_block, dropout)
decoder_blocks.append(decoder_block)
# Create the encoder and decoder
encoder = Encoder(nn.ModuleList(encoder_blocks))
decoder = Decoder(nn.ModuleList(decoder_blocks))
# Create the projection layer
projection_layer = ProjectionLayer(d_model, tgt_vocab_size)
# Create the transformer
transformer = Transformer(encoder, decoder, tgt_embed, tgt_pos, projection_layer, att)
# Initialize the parameters
for p in transformer.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
return transformer |