File size: 15,934 Bytes
22ca2be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
import torch
import torch.nn as nn
import math
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
from torchvision.transforms.functional import to_pil_image, to_tensor
import time
import numpy as np
from matplotlib.image import imread
from transformers import ViTFeatureExtractor
from io import BytesIO
from base64 import b64decode
import base64
from transformers import ViTImageProcessor, ViTModel
## code from @jankrepl on github

class PretrainedVit():
    def __init__(self):
       
        self.model = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k')
    def forward(self, x):
        
        self.model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
        self.model.config.output_hidden_states = True
        outputs = self.model(x)
        # print(outputs)
        last_hidden_states = outputs.hidden_states
        return list(last_hidden_states)

class PatchEmbed(nn.Module):
    """Split image into patches and then embed them.

    Parameters
    ----------
    img_size : int
        Size of the image (it is a square).

    patch_size : int
        Size of the patch (it is a square).

    in_chans : int
        Number of input channels.

    embed_dim : int
        The emmbedding dimension.

    Attributes
    ----------
    n_patches : int
        Number of patches inside of our image.

    proj : nn.Conv2d
        Convolutional layer that does both the splitting into patches
        and their embedding.
    """
    def __init__(self, img_size, patch_size, in_chans=3, embed_dim=1024, num_registers = 6):
        super().__init__()
        self.img_size = img_size
        self.patch_size = patch_size
        self.norm = RMSNorm()
        self.n_patches = (img_size // patch_size) ** 2
        self.pos_embed = nn.Parameter(
                torch.zeros(1, self.n_patches+1+num_registers, embed_dim)
        )
         # Adding CLS token as a learnable parameter
        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.register_token = nn.Parameter(torch.zeros(num_registers, embed_dim))

        self.proj = nn.Conv2d(
                in_chans,
                embed_dim,
                kernel_size=patch_size,
                stride=patch_size,
        )

    def forward(self, x):
        """Run forward pass.

        Parameters
        ----------
        x : torch.Tensor
            Shape `(n_samples, in_chans, img_size, img_size)`.

        Returns
        -------
        torch.Tensor
            Shape `(n_samples, n_patches, embed_dim)`.
        """
        x = self.proj(x)  # (n_samples, embed_dim, n_patches ** 0.5, n_patches ** 0.5)
        x = x.flatten(2)  # (n_samples, embed_dim, n_patches)
        x = x.transpose(1, 2) # (n_samples, n_patches, embed_dim)
        batch_size = x.shape[0]


        cls_tokens = self.cls_token.expand(batch_size, -1, -1)  # Expand CLS tokens for the batch
        x = torch.cat([cls_tokens, x], dim=1)

        # x: (n_samples, n_patches + 1 + num_registers, embed_dimension) add register tokens
        register_tokens = self.register_token.unsqueeze(0).expand(batch_size, -1, -1) 
        x = torch.cat([x, register_tokens], dim=1)
        X = self.norm(x)
        x = x + self.pos_embed  # Learnable pos embed -> (n_samples, n_patches_embed_dim) 
    
        return x


## not used 
class RMSNorm(nn.Module):
    def __init__(self, dim: int = 1024, eps: float = 1e-6):
        super().__init__()
        self.eps = eps
        self.dim = dim
        # The gamma parameter
        self.weight = nn.Parameter(torch.ones(self.dim))

    def _norm(self, x: torch.Tensor):
        # (B, Seq_Len, Dim) * (B, Seq_Len, 1) = (B, Seq_Len, Dim)
        # rsqrt: 1 / sqrt(x)
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

    def forward(self, x: torch.Tensor):
        # (Dim) * (B, Seq_Len, Dim) = (B, Seq_Len, Dim)
        return self.weight * self._norm(x.float()).type_as(x)

class LayerNormalization(nn.Module):

    def __init__(self, eps:float=1e-12) -> None:
        super().__init__()
        self.eps = eps
        self.alpha = nn.Parameter(torch.ones(1)) # alpha is a learnable parameter
        self.bias = nn.Parameter(torch.zeros(1)) # bias is a learnable parameter

    def forward(self, x):
        # x: (batch, seq_len, hidden_size)
         # Keep the dimension for broadcasting
        mean = x.mean(dim = -1, keepdim = True) # (batch, seq_len, 1)
        # Keep the dimension for broadcasting
        std = x.std(dim = -1, keepdim = True) # (batch, seq_len, 1)
        # eps is to prevent dividing by zero or when std is very small
        # print(f'mean shape {mean.squeeze(-1).shape}')
        return self.alpha * (x - mean) / (std + self.eps) + self.bias

class FeedForwardBlock(nn.Module):

    def __init__(self, d_model: int, d_ff: int, dropout: float) -> None:
        super().__init__()
        self.linear_1 = nn.Linear(d_model, d_ff) # w1 and b1
        self.dropout = nn.Dropout(dropout)
        self.linear_2 = nn.Linear(d_ff, d_model) # w2 and b2

    def forward(self, x):
        # (batch, seq_len, d_model) --> (batch, seq_len, d_ff) --> (batch, seq_len, d_model)
        return self.linear_2(self.dropout(torch.relu(self.linear_1(x))))

class InputEmbeddings(nn.Module):

    def __init__(self, d_model: int, vocab_size: int) -> None:
        super().__init__()
        self.d_model = d_model
        self.vocab_size = vocab_size
        self.embedding = nn.Embedding(vocab_size, d_model)

    def forward(self, x):
        # (batch, seq_len) --> (batch, seq_len, d_model)
        # Multiply by sqrt(d_model) to scale the embeddings according to the paper
        return self.embedding(x) * math.sqrt(self.d_model)
    
class PositionalEncoding(nn.Module):

    def __init__(self, d_model: int, seq_len: int, dropout: float) -> None:
        super().__init__()
        self.d_model = d_model
        self.seq_len = seq_len
        self.dropout = nn.Dropout(dropout)
        # Create a matrix of shape (seq_len, d_model)
        pe = torch.zeros(seq_len, d_model)
        # Create a vector of shape (seq_len)
        position = torch.arange(0, seq_len, dtype=torch.float).unsqueeze(1) # (seq_len, 1)
        # Create a vector of shape (d_model)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) # (d_model / 2)
        # Apply sine to even indices
        pe[:, 0::2] = torch.sin(position * div_term) # sin(position * (10000 ** (2i / d_model))
        # Apply cosine to odd indices
        pe[:, 1::2] = torch.cos(position * div_term) # cos(position * (10000 ** (2i / d_model))
        # Add a batch dimension to the positional encoding
        pe = pe.unsqueeze(0) # (1, seq_len, d_model)
        # Register the positional encoding as a buffer
        self.register_buffer('pe', pe)

    def forward(self, x):
        x = x + (self.pe[:, :x.shape[1], :]).requires_grad_(False) # (batch, seq_len, d_model)
        return self.dropout(x)

class ResidualConnection(nn.Module):
    
        def __init__(self, dropout: float) -> None:
            super().__init__()
            self.dropout = nn.Dropout(dropout)
            self.norm = LayerNormalization()
    
        def forward(self, x, sublayer):
            return x + self.dropout(sublayer(self.norm(x)))

class MultiHeadAttentionBlock(nn.Module):

    def __init__(self, d_model: int, h: int, dropout: float) -> None:
        super().__init__()
        self.d_model = d_model # Embedding vector size
        self.h = h # Number of heads
        # Make sure d_model is divisible by h
        assert d_model % h == 0, "d_model is not divisible by h"

        self.d_k = d_model // h # Dimension of vector seen by each head
        self.w_q = nn.Linear(d_model, d_model) # Wq
        self.w_k = nn.Linear(d_model, d_model) # Wk
        self.w_v = nn.Linear(d_model, d_model) # Wv
        self.w_o = nn.Linear(d_model, d_model) # Wo
        self.dropout = nn.Dropout(dropout)

    @staticmethod
    def attention(query, key, value, mask, dropout: nn.Dropout):
        d_k = query.shape[-1]
        # Just apply the formula from the paper
        # (batch, h, seq_len, d_k) --> (batch, h, seq_len, seq_len)
       
        attention_scores = (query @ key.transpose(-2, -1)) / math.sqrt(d_k)
       
       
        if mask is not None:
            # Write a very low value (indicating -inf) to the positions where mask == 0
            attention_scores.masked_fill_(mask == 0, -1e9)
        attention_scores = attention_scores.softmax(dim=-1) # (batch, h, seq_len, seq_len) # Apply softmax
        if dropout is not None:
            attention_scores = dropout(attention_scores)
        # (batch, h, seq_len, seq_len) --> (batch, h, seq_len, d_k)
        # return attention scores which can be used for visualization

        # attention_viz(attention_scores)
        return (attention_scores @ value), attention_scores

    def forward(self, q, k, v, mask, is_cross=False):
        query = self.w_q(q) # (batch, seq_len, d_model) --> (batch, seq_len, d_model)
        key = self.w_k(k) # (batch, seq_len, d_model) --> (batch, seq_len, d_model)
        value = self.w_v(v) # (batch, seq_len, d_model) --> (batch, seq_len, d_model)

        # (batch, seq_len, d_model) --> (batch, seq_len, h, d_k) --> (batch, h, seq_len, d_k)
        query = query.view(query.shape[0], query.shape[1], self.h, self.d_k).transpose(1, 2)
        key = key.view(key.shape[0], key.shape[1], self.h, self.d_k).transpose(1, 2)
        value = value.view(value.shape[0], value.shape[1], self.h, self.d_k).transpose(1, 2)

        # Calculate attention
        x, self.attention_scores = MultiHeadAttentionBlock.attention(query, key, value, mask, self.dropout)
        
        if is_cross:
            attention_viz(self.attention_scores)
        # Combine all the heads together
        # (batch, h, seq_len, d_k) --> (batch, seq_len, h, d_k) --> (batch, seq_len, d_model)
        x = x.transpose(1, 2).contiguous().view(x.shape[0], -1, self.h * self.d_k)

        # Multiply by Wo
        # (batch, seq_len, d_model) --> (batch, seq_len, d_model)  
        return self.w_o(x)

class EncoderBlock(nn.Module):

    def __init__(self, self_attention_block: MultiHeadAttentionBlock, feed_forward_block: FeedForwardBlock, dropout: float,  layer: int ) -> None:
        super().__init__()
        self.self_attention_block = self_attention_block
        self.feed_forward_block = feed_forward_block
        self.residual_connections = nn.ModuleList([ResidualConnection(dropout) for _ in range(2)])
        self.layer = layer

    def forward(self, x, src_mask, index):
        # print(x.shape)
        # print(self.layer)
        
        out = x[11]
        # out = self.residual_connections[1](out, self.feed_forward_block)
        return out
    
class Encoder(nn.Module):

    def __init__(self, layers: nn.ModuleList) -> None:
        super().__init__()
        self.layers = layers
        self.norm = LayerNormalization()

    def forward(self, x, mask):
        for index, layer in enumerate(self.layers):
        #     print(index)
            x = layer(x, mask, index)
            break
        return self.norm(x)

class DecoderBlock(nn.Module):

    def __init__(self, self_attention_block: MultiHeadAttentionBlock, cross_attention_block: MultiHeadAttentionBlock, feed_forward_block: FeedForwardBlock, dropout: float) -> None:
        super().__init__()
        self.self_attention_block = self_attention_block
        self.cross_attention_block = cross_attention_block
        self.feed_forward_block = feed_forward_block
        self.residual_connections = nn.ModuleList([ResidualConnection(dropout) for _ in range(3)])

    def forward(self, x, encoder_output, src_mask, tgt_mask):
        x = self.residual_connections[0](x, lambda x: self.self_attention_block(x, x, x, tgt_mask))
        x = self.residual_connections[1](x, lambda x: self.cross_attention_block(x, encoder_output, encoder_output, src_mask))
        x = self.residual_connections[2](x, self.feed_forward_block)
        
        return x
    
class Decoder(nn.Module):

    def __init__(self, layers: nn.ModuleList) -> None:
        super().__init__()
        self.layers = layers
        self.norm = LayerNormalization()

    def forward(self, x, encoder_output, src_mask, tgt_mask):
        for layer in self.layers:
            x = layer(x, encoder_output, src_mask, tgt_mask)
        return self.norm(x)

class ProjectionLayer(nn.Module):

    def __init__(self, d_model, vocab_size) -> None:
        super().__init__()
        self.proj = nn.Linear(d_model, vocab_size)

    def forward(self, x) -> None:
        # (batch, seq_len, d_model) --> (batch, seq_len, vocab_size)
        return torch.log_softmax(self.proj(x), dim = -1)
    
class Transformer(nn.Module):

    def __init__(self, encoder: Encoder, decoder: Decoder, tgt_embed: InputEmbeddings, tgt_pos: PositionalEncoding, projection_layer: ProjectionLayer, att: PretrainedVit) -> None:
        super().__init__()
        self.encoder = encoder
        self.decoder = decoder
        # self.src_embed = src_embed
        self.tgt_embed = tgt_embed
        # self.src_pos = src_pos
        self.tgt_pos = tgt_pos
        self.projection_layer = projection_layer
        self.patch_embed = PatchEmbed(img_size=224, patch_size=14)
        self.att = att

    def encode(self, src, src_mask):
        # (batch, seq_len, d_model)
        attention_list = self.att.forward(src)
        # src = self.src_pos(src)
        return self.encoder(attention_list[1:], src_mask)
    
    def decode(self, encoder_output: torch.Tensor, src_mask: torch.Tensor, tgt: torch.Tensor, tgt_mask: torch.Tensor):
        # (batch, seq_len, d_model)
       
        tgt = self.tgt_embed(tgt)
        tgt = self.tgt_pos(tgt)
        return self.decoder(tgt, encoder_output, src_mask, tgt_mask)
    
    def project(self, x):
        # (batch, seq_len, vocab_size)
        return self.projection_layer(x)

def build_transformer(tgt_vocab_size: int, tgt_seq_len: int, d_model: int=768, N: int=10, h: int=12, dropout: float=0.1, d_ff: int=3072) -> Transformer:
    # Create the embedding layers
  
    tgt_embed = InputEmbeddings(d_model, tgt_vocab_size)

    # Create the positional encoding layers
    # src_pos = PositionalEncoding(d_model, src_seq_len, dropout)
    tgt_pos = PositionalEncoding(d_model, tgt_seq_len, dropout)

    #attention from pretrained vit
    att = PretrainedVit()
    
    
    # Create the encoder blocks
    encoder_blocks = []
    for _ in range(N):
        print()
        encoder_self_attention_block = MultiHeadAttentionBlock(d_model, h, dropout)
        feed_forward_block = FeedForwardBlock(d_model, d_ff, dropout)
        encoder_block = EncoderBlock(encoder_self_attention_block, feed_forward_block, dropout, _)
        encoder_blocks.append(encoder_block)

    # Create the decoder blocks
    decoder_blocks = []
    for _ in range(N):
        decoder_self_attention_block = MultiHeadAttentionBlock(d_model, h, dropout)
        decoder_cross_attention_block = MultiHeadAttentionBlock(d_model, h, dropout)
        feed_forward_block = FeedForwardBlock(d_model, d_ff, dropout)
        decoder_block = DecoderBlock(decoder_self_attention_block, decoder_cross_attention_block, feed_forward_block, dropout)
        decoder_blocks.append(decoder_block)
    
    # Create the encoder and decoder
    encoder = Encoder(nn.ModuleList(encoder_blocks))
    decoder = Decoder(nn.ModuleList(decoder_blocks))
    
    # Create the projection layer
    projection_layer = ProjectionLayer(d_model, tgt_vocab_size)
    
    # Create the transformer
    transformer = Transformer(encoder, decoder,  tgt_embed, tgt_pos, projection_layer, att)
    
    # Initialize the parameters
    for p in transformer.parameters():
        if p.dim() > 1:
            nn.init.xavier_uniform_(p)
    
    return transformer