Spaces:
Running
Running
File size: 14,933 Bytes
22ca2be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
from model import build_transformer
from dataset import BilingualDataset, causal_mask
from config import get_config, get_weights_file_path
import datasets
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import IterableDataset, DataLoader, random_split
from torch.optim.lr_scheduler import LambdaLR
import warnings
from tqdm import tqdm
import os
from pathlib import Path
# Huggingface datasets and tokenizers
from datasets import load_dataset
from tokenizers import Tokenizer
from tokenizers.models import WordLevel
from tokenizers.trainers import WordLevelTrainer
from tokenizers.pre_tokenizers import Whitespace
import torchmetrics
import wandb
import accelerate
from torch.utils.tensorboard import SummaryWriter
from safetensors.torch import load_model, save_model
from accelerate import Accelerator
from transformers import GPT2TokenizerFast
import threading
def greedy_decode(model, source, source_mask, tokenizer_tgt, max_len, device):
sos_idx = tokenizer_tgt.convert_tokens_to_ids('[SOS]')
eos_idx = tokenizer_tgt.convert_tokens_to_ids('[EOS]')
# Precompute the encoder output and reuse it for every step
encoder_output = model.module.encode(source, None)
# Initialize the decoder input with the sos token
decoder_input = torch.empty(1, 1).fill_(sos_idx).long().to(device)
while True:
if decoder_input.size(1) == max_len:
break
# build mask for target
decoder_mask = causal_mask(decoder_input.size(1)).long().to(device)
# calculate output
out = model.module.decode(encoder_output, source_mask, decoder_input, decoder_mask)
# print(f'out: {out.shape}')
# Get next token probabilities with temperature applied
logits = model.module.project(out[:, -1])
probabilities = F.softmax(logits, dim=-1)
# Greedily select the next word
next_word = torch.argmax(probabilities, dim=1)
# Append next word
decoder_input = torch.cat([decoder_input, next_word.unsqueeze(0)], dim=1)
# # get next token
# prob = model.project(out[:, -1])
# _, next_word = torch.max(prob, dim=1)
# # print(f'prob: {prob.shape}')
# decoder_input = torch.cat(
# [decoder_input, torch.empty(1, 1).long().fill_(next_word.item()).to(device)], dim=1
# )
if next_word.item() == eos_idx:
break
return decoder_input.squeeze(0)
def run_validation(model, validation_ds,tokenizer_tgt, max_len, device, print_msg, global_step, num_examples=3):
model.eval()
count = 0
source_texts = []
expected = []
predicted = []
try:
# get the console window width
with os.popen('stty size', 'r') as console:
_, console_width = console.read().split()
console_width = int(console_width)+_
except:
# If we can't get the console width, use 80 as default
console_width = 80
with torch.no_grad():
for batch in validation_ds:
count += 1
encoder_input = batch["encoder_input"].to(device) # (b, seq_len)
encoder_mask = batch["encoder_mask"].to(device) # (b, 1, 1, seq_len)
# check that the batch size is 1
assert encoder_input.size(
0) == 1, "Batch size must be 1 for validation"
model_out = greedy_decode(model, encoder_input, None, tokenizer_tgt, max_len, device)
# source_text = batch["src_text"][0]
target_text = batch["tgt_text"][0]
model_out_text = tokenizer_tgt.decode(model_out.detach().cpu().numpy())
# source_texts.append(source_text)
expected.append(target_text)
predicted.append(model_out_text)
# Print the source, target and model output
print_msg('-'*console_width)
# print_msg(f"{f'SOURCE: ':>12}{source_text}")
print_msg(f"{f'TARGET: ':>12}{target_text}")
print_msg(f"{f'PREDICTED: ':>12}{model_out_text}")
if count == num_examples:
print_msg('-'*console_width)
break
# if writer:
# # Evaluate the character error rate
# # Compute the char error rate
# metric = torchmetrics.CharErrorRate()
# cer = metric(predicted, expected)
# writer.add_scalar('validation cer', cer, global_step)
# writer.flush()
# # Compute the word error rate
# metric = torchmetrics.WordErrorRate()
# wer = metric(predicted, expected)
# writer.add_scalar('validation wer', wer, global_step)
# writer.flush()
# # Compute the BLEU metric
# metric = torchmetrics.BLEUScore()
# bleu = metric(predicted, expected)
# writer.add_scalar('validation BLEU', bleu, global_step)
# writer.flush()
def get_all_sentences(ds):
for item in ds:
yield item['text']
def batch_iterator(data):
for i in range(0, len(data)):
yield data[i]['text']
# Assuming batch_iterator is a function that yields batches
def tqdm_batch_iterator(data, *args, **kwargs):
for batch in tqdm(batch_iterator(data, *args, **kwargs), total=len(data)):
yield batch
def get_or_build_tokenizer(config, ds):
tokenizer = GPT2TokenizerFast.from_pretrained("openai-community/gpt2", unk_token ='[UNK]', bos_token = '[SOS]', eos_token = '[EOS]' , pad_token = '[PAD]')
return tokenizer
# tokenizer_path = Path(config['tokenizer_file'])
# if not Path.exists(tokenizer_path):
# # Most code taken from: https://huggingface.co/docs/tokenizers/quicktour
# tokenizer = Tokenizer(WordLevel(unk_token="[UNK]"))
# tokenizer.pre_tokenizer = Whitespace()
# trainer = WordLevelTrainer(special_tokens=["[UNK]", "[PAD]", "[SOS]", "[EOS]"], min_frequency=2)
# tokenizer.train_from_iterator(get_all_sentences(ds), trainer=trainer)
# tokenizer.save(str(tokenizer_path))
# else:
# tokenizer = Tokenizer.from_file(str(tokenizer_path))
# return tokenizer
def get_ds(config):
# It only has the train split, so we divide it overselves
# ds_raw = load_dataset("HausaNLP/HausaVG", split='train+validation+test+challenge_test')
train_ds_raw = load_dataset("MMInstruction/M3IT", 'coco', split ='train')
val_ds_raw = load_dataset("MMInstruction/M3IT", 'coco', split ='validation[:2%]')
# ds_raw = load_dataset('opus_books', f"{config['lang_src']}-{config['lang_tgt']}", split='train')
# Build tokenizers
tokenizer_tgt = get_or_build_tokenizer(config, train_ds_raw,)
seed = 20 # You can choose any integer as your seed
torch.manual_seed(seed)
# # Keep 90% for training, 10% for validation
# train_ds_size = int(0.9 * len(ds_raw))
# val_ds_size = len(ds_raw) - train_ds_size
# train_ds_raw, val_ds_raw = random_split(ds_raw, [train_ds_size, val_ds_size])
train_ds = BilingualDataset(train_ds_raw, tokenizer_tgt, config['seq_len'])
val_ds = BilingualDataset(val_ds_raw, tokenizer_tgt, config['seq_len'])
train_dataloader = DataLoader(train_ds,batch_size=config['batch_size'], shuffle=True )
val_dataloader = DataLoader(val_ds, batch_size=1,shuffle=True )
return train_dataloader, val_dataloader, tokenizer_tgt
def get_model(config, vocab_tgt_len):
model = build_transformer(vocab_tgt_len, config['seq_len'], d_model=config['d_model'])
return model
def train_model(config):
accelerator = Accelerator()
print()
wandb.login(key = 'c20a1022142595d7d1324fdc53b3ccb34c0ded22')
wandb.init(project="Vision", name=config['project_name'])
# Initialize WandB configuration
wandb.config.epochs = config['num_epochs']
wandb.config.batch_size = config['batch_size']
wandb.config.learning_rate = config['lr']
# Define the devic
# Define the device
device = accelerator.device
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Using device:", device)
# Make sure the weights folder exists
Path(config['model_folder']).mkdir(parents=True, exist_ok=True)
train_dataloader, val_dataloader, tokenizer_tgt = get_ds(config)
model = get_model(config, len(tokenizer_tgt)).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=config['lr'], betas=(0.9, 0.98),eps=1e-9)
model, optimizer, train_dataloader, val_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, val_dataloader
)
# If the user specified a model to preload before training, load it
initial_epoch = 0
global_step = 0
def save_models():
accelerator.save_state(output_dir=f'/kaggle/working/weights/tmodel_00')
print(f'saving global step {global_step}')
if config['preload']:
model_filename = get_weights_file_path(config, config['preload'])
print(f'Preloading model {model_filename}')
accelerator.load_state(model_filename)
initial_epoch = 4
# state = torch.load(model_filename)
# model.load_state_dict(state['model_state_dict'])
# initial_epoch = state['epoch'] + 1
# optimizer.load_state_dict(state['optimizer_state_dict'])
# global_step = state['global_step']
loss_fn = nn.CrossEntropyLoss(ignore_index=tokenizer_tgt.convert_tokens_to_ids('[PAD]'), label_smoothing=0.1).to(device)
for epoch in range(initial_epoch, config['num_epochs']):
# timer = threading.Timer(5*60, save_models)
# timer.start()
model.train()
batch_iterator = tqdm(train_dataloader, desc=f"Processing Epoch {epoch:02d}")
for batch in batch_iterator:
encoder_input = batch["encoder_input"].to(device) # (b, seq_len)
decoder_input = batch["decoder_input"].to(device) # (B, seq_len)
encoder_mask = batch["encoder_mask"].to(device) # (B, 1, 1, seq_len)
decoder_mask = batch["decoder_mask"].to(device) # (B, 1, seq_len, seq_len)
# Run the tensors through the encoder, decoder and the projection layer
encoder_output = model.module.encode(encoder_input, None) # (B, seq_len, d_model)
decoder_output = model.module.decode(encoder_output, None, decoder_input, decoder_mask) # (B, seq_len, d_model)
proj_output = model.module.project(decoder_output)
# (B, seq_len, vocab_size)
# Compare the output with the label
label = batch["label"].to(device) # (B, seq_len)
# Compute the loss using a simple cross entropy
loss = loss_fn(proj_output.view(-1, len(tokenizer_tgt)), label.view(-1))
batch_iterator.set_postfix({"loss": f"{loss.item():6.3f}"})
# Log the loss
wandb.log({"Training Loss": loss.item(), "Global Step": global_step})
# # Backpropagate the loss
# loss.backward()
accelerator.backward(loss)
# Update the weights
optimizer.step()
optimizer.zero_grad(set_to_none=True)
global_step += 1
# if global_step == 20000 or global_step == 25000:
# print(f'saved state at {global_step}')
# accelerator.save_state(output_dir=f'/kaggle/working/weights/tmodel_{epoch:02d}')
if global_step == 1000 or global_step == 5000 or global_step == 10000 or global_step == 15000 or global_step == 20000 or global_step == 30000:
run_validation(model, val_dataloader, tokenizer_tgt, config['seq_len'], device, lambda msg: batch_iterator.write(msg), global_step)
model.train()
# # Run validation at the end of every epoch
# Save the model at the end of every epoch
model_filename = get_weights_file_path(config, f"{epoch:02d}")
# torch.save({
# 'epoch': epoch,
# 'model_state_dict': model.state_dict(),
# 'optimizer_state_dict': optimizer.state_dict(),
# 'global_step': global_step
# }, model_filename)
# accelerator.save_model(model, model_filename)
accelerator.save_state(output_dir=f'/kaggle/working/weights/tmodel_{epoch:02d}')
# run_validation(model, val_dataloader, tokenizer_src, tokenizer_tgt, config['seq_len'], device, lambda msg: batch_iterator.write(msg), global_step, writer)
model.eval()
eval_loss = 0.0
#accelerate
accurate = 0
num_elems = 0
# batch_iterator = tqdm(v_dataloader, desc=f"Processing Epoch {epoch:02d}")
with torch.no_grad():
batch_itere = tqdm(val_dataloader, desc=f"Processing loss")
for batch in batch_itere:
encoder_input = batch['encoder_input'].to(device) # (b, seq_len)
decoder_input = batch['decoder_input'].to(device) # (B, seq_len)
encoder_mask = batch['encoder_mask'].to(device) # (B, 1, 1, seq_len)
decoder_mask = batch['decoder_mask'].to(device) # (B, 1, seq_len, seq_len)
# Run the tensors through the encoder, decoder and the projection layer
encoder_output = model.module.encode(encoder_input, None) # (B, seq_len, d_model)
decoder_output = model.module.decode(encoder_output, None, decoder_input, decoder_mask)# (B, seq_len, d_model)
proj_output = model.module.project(decoder_output)
# (B, seq_len, vocab_size)
# Compare the output with the label
# label = batch['label'].to(device) # (B, seq_len)
proj_output, label = accelerator.gather_for_metrics((
proj_output, batch["label"]
))
# Compute the loss using a simple cross entropy
ls = loss_fn(proj_output.view(-1, len(tokenizer_tgt)), label.view(-1))
batch_itere.set_postfix({"loss": f"{ls.item():6.3f}"})
eval_loss += ls
# loss_fn(proj_output.view(-1, tokenizer_tgt.get_vocab_size()), label.view(-1))
avg_val_loss = eval_loss / len(val_dataloader)
accelerator.print(f"Epoch {epoch},Validation Loss: {avg_val_loss})Validation Loss: {avg_val_loss}")
# print(f'Epoch {epoch},Validation Loss: {avg_val_loss.item()}')
wandb.log({"Validation Loss": avg_val_loss.item(), "Global Step": global_step})
run_validation(model, val_dataloader, tokenizer_tgt, config['seq_len'], device, lambda msg: batch_iterator.write(msg), global_step)
if __name__ == '__main__':
warnings.filterwarnings("ignore")
config = get_config()
train_model(config)
|