Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import math | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from PIL import Image | |
from torchvision.transforms.functional import to_pil_image, to_tensor | |
import time | |
import numpy as np | |
from matplotlib.image import imread | |
from transformers import ViTFeatureExtractor | |
from io import BytesIO | |
from base64 import b64decode | |
import base64 | |
from transformers import ViTImageProcessor, ViTModel | |
## code from @jankrepl on github | |
class PretrainedVit(): | |
def __init__(self): | |
self.model = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k') | |
def forward(self, x): | |
self.model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) | |
self.model.config.output_hidden_states = True | |
outputs = self.model(x) | |
# print(outputs) | |
last_hidden_states = outputs.hidden_states | |
return list(last_hidden_states) | |
class PatchEmbed(nn.Module): | |
"""Split image into patches and then embed them. | |
Parameters | |
---------- | |
img_size : int | |
Size of the image (it is a square). | |
patch_size : int | |
Size of the patch (it is a square). | |
in_chans : int | |
Number of input channels. | |
embed_dim : int | |
The emmbedding dimension. | |
Attributes | |
---------- | |
n_patches : int | |
Number of patches inside of our image. | |
proj : nn.Conv2d | |
Convolutional layer that does both the splitting into patches | |
and their embedding. | |
""" | |
def __init__(self, img_size, patch_size, in_chans=3, embed_dim=1024, num_registers = 6): | |
super().__init__() | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.norm = RMSNorm() | |
self.n_patches = (img_size // patch_size) ** 2 | |
self.pos_embed = nn.Parameter( | |
torch.zeros(1, self.n_patches+1+num_registers, embed_dim) | |
) | |
# Adding CLS token as a learnable parameter | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | |
self.register_token = nn.Parameter(torch.zeros(num_registers, embed_dim)) | |
self.proj = nn.Conv2d( | |
in_chans, | |
embed_dim, | |
kernel_size=patch_size, | |
stride=patch_size, | |
) | |
def forward(self, x): | |
"""Run forward pass. | |
Parameters | |
---------- | |
x : torch.Tensor | |
Shape `(n_samples, in_chans, img_size, img_size)`. | |
Returns | |
------- | |
torch.Tensor | |
Shape `(n_samples, n_patches, embed_dim)`. | |
""" | |
x = self.proj(x) # (n_samples, embed_dim, n_patches ** 0.5, n_patches ** 0.5) | |
x = x.flatten(2) # (n_samples, embed_dim, n_patches) | |
x = x.transpose(1, 2) # (n_samples, n_patches, embed_dim) | |
batch_size = x.shape[0] | |
cls_tokens = self.cls_token.expand(batch_size, -1, -1) # Expand CLS tokens for the batch | |
x = torch.cat([cls_tokens, x], dim=1) | |
# x: (n_samples, n_patches + 1 + num_registers, embed_dimension) add register tokens | |
register_tokens = self.register_token.unsqueeze(0).expand(batch_size, -1, -1) | |
x = torch.cat([x, register_tokens], dim=1) | |
X = self.norm(x) | |
x = x + self.pos_embed # Learnable pos embed -> (n_samples, n_patches_embed_dim) | |
return x | |
## not used | |
class RMSNorm(nn.Module): | |
def __init__(self, dim: int = 1024, eps: float = 1e-6): | |
super().__init__() | |
self.eps = eps | |
self.dim = dim | |
# The gamma parameter | |
self.weight = nn.Parameter(torch.ones(self.dim)) | |
def _norm(self, x: torch.Tensor): | |
# (B, Seq_Len, Dim) * (B, Seq_Len, 1) = (B, Seq_Len, Dim) | |
# rsqrt: 1 / sqrt(x) | |
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) | |
def forward(self, x: torch.Tensor): | |
# (Dim) * (B, Seq_Len, Dim) = (B, Seq_Len, Dim) | |
return self.weight * self._norm(x.float()).type_as(x) | |
class LayerNormalization(nn.Module): | |
def __init__(self, eps:float=1e-12) -> None: | |
super().__init__() | |
self.eps = eps | |
self.alpha = nn.Parameter(torch.ones(1)) # alpha is a learnable parameter | |
self.bias = nn.Parameter(torch.zeros(1)) # bias is a learnable parameter | |
def forward(self, x): | |
# x: (batch, seq_len, hidden_size) | |
# Keep the dimension for broadcasting | |
mean = x.mean(dim = -1, keepdim = True) # (batch, seq_len, 1) | |
# Keep the dimension for broadcasting | |
std = x.std(dim = -1, keepdim = True) # (batch, seq_len, 1) | |
# eps is to prevent dividing by zero or when std is very small | |
# print(f'mean shape {mean.squeeze(-1).shape}') | |
return self.alpha * (x - mean) / (std + self.eps) + self.bias | |
class FeedForwardBlock(nn.Module): | |
def __init__(self, d_model: int, d_ff: int, dropout: float) -> None: | |
super().__init__() | |
self.linear_1 = nn.Linear(d_model, d_ff) # w1 and b1 | |
self.dropout = nn.Dropout(dropout) | |
self.linear_2 = nn.Linear(d_ff, d_model) # w2 and b2 | |
def forward(self, x): | |
# (batch, seq_len, d_model) --> (batch, seq_len, d_ff) --> (batch, seq_len, d_model) | |
return self.linear_2(self.dropout(torch.relu(self.linear_1(x)))) | |
class InputEmbeddings(nn.Module): | |
def __init__(self, d_model: int, vocab_size: int) -> None: | |
super().__init__() | |
self.d_model = d_model | |
self.vocab_size = vocab_size | |
self.embedding = nn.Embedding(vocab_size, d_model) | |
def forward(self, x): | |
# (batch, seq_len) --> (batch, seq_len, d_model) | |
# Multiply by sqrt(d_model) to scale the embeddings according to the paper | |
return self.embedding(x) * math.sqrt(self.d_model) | |
class PositionalEncoding(nn.Module): | |
def __init__(self, d_model: int, seq_len: int, dropout: float) -> None: | |
super().__init__() | |
self.d_model = d_model | |
self.seq_len = seq_len | |
self.dropout = nn.Dropout(dropout) | |
# Create a matrix of shape (seq_len, d_model) | |
pe = torch.zeros(seq_len, d_model) | |
# Create a vector of shape (seq_len) | |
position = torch.arange(0, seq_len, dtype=torch.float).unsqueeze(1) # (seq_len, 1) | |
# Create a vector of shape (d_model) | |
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) # (d_model / 2) | |
# Apply sine to even indices | |
pe[:, 0::2] = torch.sin(position * div_term) # sin(position * (10000 ** (2i / d_model)) | |
# Apply cosine to odd indices | |
pe[:, 1::2] = torch.cos(position * div_term) # cos(position * (10000 ** (2i / d_model)) | |
# Add a batch dimension to the positional encoding | |
pe = pe.unsqueeze(0) # (1, seq_len, d_model) | |
# Register the positional encoding as a buffer | |
self.register_buffer('pe', pe) | |
def forward(self, x): | |
x = x + (self.pe[:, :x.shape[1], :]).requires_grad_(False) # (batch, seq_len, d_model) | |
return self.dropout(x) | |
class ResidualConnection(nn.Module): | |
def __init__(self, dropout: float) -> None: | |
super().__init__() | |
self.dropout = nn.Dropout(dropout) | |
self.norm = LayerNormalization() | |
def forward(self, x, sublayer): | |
return x + self.dropout(sublayer(self.norm(x))) | |
class MultiHeadAttentionBlock(nn.Module): | |
def __init__(self, d_model: int, h: int, dropout: float) -> None: | |
super().__init__() | |
self.d_model = d_model # Embedding vector size | |
self.h = h # Number of heads | |
# Make sure d_model is divisible by h | |
assert d_model % h == 0, "d_model is not divisible by h" | |
self.d_k = d_model // h # Dimension of vector seen by each head | |
self.w_q = nn.Linear(d_model, d_model) # Wq | |
self.w_k = nn.Linear(d_model, d_model) # Wk | |
self.w_v = nn.Linear(d_model, d_model) # Wv | |
self.w_o = nn.Linear(d_model, d_model) # Wo | |
self.dropout = nn.Dropout(dropout) | |
def attention(query, key, value, mask, dropout: nn.Dropout): | |
d_k = query.shape[-1] | |
# Just apply the formula from the paper | |
# (batch, h, seq_len, d_k) --> (batch, h, seq_len, seq_len) | |
attention_scores = (query @ key.transpose(-2, -1)) / math.sqrt(d_k) | |
if mask is not None: | |
# Write a very low value (indicating -inf) to the positions where mask == 0 | |
attention_scores.masked_fill_(mask == 0, -1e9) | |
attention_scores = attention_scores.softmax(dim=-1) # (batch, h, seq_len, seq_len) # Apply softmax | |
if dropout is not None: | |
attention_scores = dropout(attention_scores) | |
# (batch, h, seq_len, seq_len) --> (batch, h, seq_len, d_k) | |
# return attention scores which can be used for visualization | |
# attention_viz(attention_scores) | |
return (attention_scores @ value), attention_scores | |
def forward(self, q, k, v, mask, is_cross=False): | |
query = self.w_q(q) # (batch, seq_len, d_model) --> (batch, seq_len, d_model) | |
key = self.w_k(k) # (batch, seq_len, d_model) --> (batch, seq_len, d_model) | |
value = self.w_v(v) # (batch, seq_len, d_model) --> (batch, seq_len, d_model) | |
# (batch, seq_len, d_model) --> (batch, seq_len, h, d_k) --> (batch, h, seq_len, d_k) | |
query = query.view(query.shape[0], query.shape[1], self.h, self.d_k).transpose(1, 2) | |
key = key.view(key.shape[0], key.shape[1], self.h, self.d_k).transpose(1, 2) | |
value = value.view(value.shape[0], value.shape[1], self.h, self.d_k).transpose(1, 2) | |
# Calculate attention | |
x, self.attention_scores = MultiHeadAttentionBlock.attention(query, key, value, mask, self.dropout) | |
if is_cross: | |
attention_viz(self.attention_scores) | |
# Combine all the heads together | |
# (batch, h, seq_len, d_k) --> (batch, seq_len, h, d_k) --> (batch, seq_len, d_model) | |
x = x.transpose(1, 2).contiguous().view(x.shape[0], -1, self.h * self.d_k) | |
# Multiply by Wo | |
# (batch, seq_len, d_model) --> (batch, seq_len, d_model) | |
return self.w_o(x) | |
class EncoderBlock(nn.Module): | |
def __init__(self, self_attention_block: MultiHeadAttentionBlock, feed_forward_block: FeedForwardBlock, dropout: float, layer: int ) -> None: | |
super().__init__() | |
self.self_attention_block = self_attention_block | |
self.feed_forward_block = feed_forward_block | |
self.residual_connections = nn.ModuleList([ResidualConnection(dropout) for _ in range(2)]) | |
self.layer = layer | |
def forward(self, x, src_mask, index): | |
# print(x.shape) | |
# print(self.layer) | |
out = x[11] | |
# out = self.residual_connections[1](out, self.feed_forward_block) | |
return out | |
class Encoder(nn.Module): | |
def __init__(self, layers: nn.ModuleList) -> None: | |
super().__init__() | |
self.layers = layers | |
self.norm = LayerNormalization() | |
def forward(self, x, mask): | |
for index, layer in enumerate(self.layers): | |
# print(index) | |
x = layer(x, mask, index) | |
break | |
return self.norm(x) | |
class DecoderBlock(nn.Module): | |
def __init__(self, self_attention_block: MultiHeadAttentionBlock, cross_attention_block: MultiHeadAttentionBlock, feed_forward_block: FeedForwardBlock, dropout: float) -> None: | |
super().__init__() | |
self.self_attention_block = self_attention_block | |
self.cross_attention_block = cross_attention_block | |
self.feed_forward_block = feed_forward_block | |
self.residual_connections = nn.ModuleList([ResidualConnection(dropout) for _ in range(3)]) | |
def forward(self, x, encoder_output, src_mask, tgt_mask): | |
x = self.residual_connections[0](x, lambda x: self.self_attention_block(x, x, x, tgt_mask)) | |
x = self.residual_connections[1](x, lambda x: self.cross_attention_block(x, encoder_output, encoder_output, src_mask)) | |
x = self.residual_connections[2](x, self.feed_forward_block) | |
return x | |
class Decoder(nn.Module): | |
def __init__(self, layers: nn.ModuleList) -> None: | |
super().__init__() | |
self.layers = layers | |
self.norm = LayerNormalization() | |
def forward(self, x, encoder_output, src_mask, tgt_mask): | |
for layer in self.layers: | |
x = layer(x, encoder_output, src_mask, tgt_mask) | |
return self.norm(x) | |
class ProjectionLayer(nn.Module): | |
def __init__(self, d_model, vocab_size) -> None: | |
super().__init__() | |
self.proj = nn.Linear(d_model, vocab_size) | |
def forward(self, x) -> None: | |
# (batch, seq_len, d_model) --> (batch, seq_len, vocab_size) | |
return torch.log_softmax(self.proj(x), dim = -1) | |
class Transformer(nn.Module): | |
def __init__(self, encoder: Encoder, decoder: Decoder, tgt_embed: InputEmbeddings, tgt_pos: PositionalEncoding, projection_layer: ProjectionLayer, att: PretrainedVit) -> None: | |
super().__init__() | |
self.encoder = encoder | |
self.decoder = decoder | |
# self.src_embed = src_embed | |
self.tgt_embed = tgt_embed | |
# self.src_pos = src_pos | |
self.tgt_pos = tgt_pos | |
self.projection_layer = projection_layer | |
self.patch_embed = PatchEmbed(img_size=224, patch_size=14) | |
self.att = att | |
def encode(self, src, src_mask): | |
# (batch, seq_len, d_model) | |
attention_list = self.att.forward(src) | |
# src = self.src_pos(src) | |
return self.encoder(attention_list[1:], src_mask) | |
def decode(self, encoder_output: torch.Tensor, src_mask: torch.Tensor, tgt: torch.Tensor, tgt_mask: torch.Tensor): | |
# (batch, seq_len, d_model) | |
tgt = self.tgt_embed(tgt) | |
tgt = self.tgt_pos(tgt) | |
return self.decoder(tgt, encoder_output, src_mask, tgt_mask) | |
def project(self, x): | |
# (batch, seq_len, vocab_size) | |
return self.projection_layer(x) | |
def build_transformer(tgt_vocab_size: int, tgt_seq_len: int, d_model: int=768, N: int=10, h: int=12, dropout: float=0.1, d_ff: int=3072) -> Transformer: | |
# Create the embedding layers | |
tgt_embed = InputEmbeddings(d_model, tgt_vocab_size) | |
# Create the positional encoding layers | |
# src_pos = PositionalEncoding(d_model, src_seq_len, dropout) | |
tgt_pos = PositionalEncoding(d_model, tgt_seq_len, dropout) | |
#attention from pretrained vit | |
att = PretrainedVit() | |
# Create the encoder blocks | |
encoder_blocks = [] | |
for _ in range(N): | |
print() | |
encoder_self_attention_block = MultiHeadAttentionBlock(d_model, h, dropout) | |
feed_forward_block = FeedForwardBlock(d_model, d_ff, dropout) | |
encoder_block = EncoderBlock(encoder_self_attention_block, feed_forward_block, dropout, _) | |
encoder_blocks.append(encoder_block) | |
# Create the decoder blocks | |
decoder_blocks = [] | |
for _ in range(N): | |
decoder_self_attention_block = MultiHeadAttentionBlock(d_model, h, dropout) | |
decoder_cross_attention_block = MultiHeadAttentionBlock(d_model, h, dropout) | |
feed_forward_block = FeedForwardBlock(d_model, d_ff, dropout) | |
decoder_block = DecoderBlock(decoder_self_attention_block, decoder_cross_attention_block, feed_forward_block, dropout) | |
decoder_blocks.append(decoder_block) | |
# Create the encoder and decoder | |
encoder = Encoder(nn.ModuleList(encoder_blocks)) | |
decoder = Decoder(nn.ModuleList(decoder_blocks)) | |
# Create the projection layer | |
projection_layer = ProjectionLayer(d_model, tgt_vocab_size) | |
# Create the transformer | |
transformer = Transformer(encoder, decoder, tgt_embed, tgt_pos, projection_layer, att) | |
# Initialize the parameters | |
for p in transformer.parameters(): | |
if p.dim() > 1: | |
nn.init.xavier_uniform_(p) | |
return transformer |