import torch
import torch.nn as nn
import math
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
from torchvision.transforms.functional import to_pil_image, to_tensor
import time
import numpy as np
from matplotlib.image import imread
from transformers import ViTFeatureExtractor
from io import BytesIO
from base64 import b64decode
import base64
from transformers import ViTImageProcessor, ViTModel
## code from @jankrepl on github

class PretrainedVit():
    def __init__(self):
       
        self.model = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k')
    def forward(self, x):
        
        self.model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
        self.model.config.output_hidden_states = True
        outputs = self.model(x)
        # print(outputs)
        last_hidden_states = outputs.hidden_states
        return list(last_hidden_states)

class PatchEmbed(nn.Module):
    """Split image into patches and then embed them.

    Parameters
    ----------
    img_size : int
        Size of the image (it is a square).

    patch_size : int
        Size of the patch (it is a square).

    in_chans : int
        Number of input channels.

    embed_dim : int
        The emmbedding dimension.

    Attributes
    ----------
    n_patches : int
        Number of patches inside of our image.

    proj : nn.Conv2d
        Convolutional layer that does both the splitting into patches
        and their embedding.
    """
    def __init__(self, img_size, patch_size, in_chans=3, embed_dim=1024, num_registers = 6):
        super().__init__()
        self.img_size = img_size
        self.patch_size = patch_size
        self.norm = RMSNorm()
        self.n_patches = (img_size // patch_size) ** 2
        self.pos_embed = nn.Parameter(
                torch.zeros(1, self.n_patches+1+num_registers, embed_dim)
        )
         # Adding CLS token as a learnable parameter
        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.register_token = nn.Parameter(torch.zeros(num_registers, embed_dim))

        self.proj = nn.Conv2d(
                in_chans,
                embed_dim,
                kernel_size=patch_size,
                stride=patch_size,
        )

    def forward(self, x):
        """Run forward pass.

        Parameters
        ----------
        x : torch.Tensor
            Shape `(n_samples, in_chans, img_size, img_size)`.

        Returns
        -------
        torch.Tensor
            Shape `(n_samples, n_patches, embed_dim)`.
        """
        x = self.proj(x)  # (n_samples, embed_dim, n_patches ** 0.5, n_patches ** 0.5)
        x = x.flatten(2)  # (n_samples, embed_dim, n_patches)
        x = x.transpose(1, 2) # (n_samples, n_patches, embed_dim)
        batch_size = x.shape[0]


        cls_tokens = self.cls_token.expand(batch_size, -1, -1)  # Expand CLS tokens for the batch
        x = torch.cat([cls_tokens, x], dim=1)

        # x: (n_samples, n_patches + 1 + num_registers, embed_dimension) add register tokens
        register_tokens = self.register_token.unsqueeze(0).expand(batch_size, -1, -1) 
        x = torch.cat([x, register_tokens], dim=1)
        X = self.norm(x)
        x = x + self.pos_embed  # Learnable pos embed -> (n_samples, n_patches_embed_dim) 
    
        return x


## not used 
class RMSNorm(nn.Module):
    def __init__(self, dim: int = 1024, eps: float = 1e-6):
        super().__init__()
        self.eps = eps
        self.dim = dim
        # The gamma parameter
        self.weight = nn.Parameter(torch.ones(self.dim))

    def _norm(self, x: torch.Tensor):
        # (B, Seq_Len, Dim) * (B, Seq_Len, 1) = (B, Seq_Len, Dim)
        # rsqrt: 1 / sqrt(x)
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

    def forward(self, x: torch.Tensor):
        # (Dim) * (B, Seq_Len, Dim) = (B, Seq_Len, Dim)
        return self.weight * self._norm(x.float()).type_as(x)

class LayerNormalization(nn.Module):

    def __init__(self, eps:float=1e-12) -> None:
        super().__init__()
        self.eps = eps
        self.alpha = nn.Parameter(torch.ones(1)) # alpha is a learnable parameter
        self.bias = nn.Parameter(torch.zeros(1)) # bias is a learnable parameter

    def forward(self, x):
        # x: (batch, seq_len, hidden_size)
         # Keep the dimension for broadcasting
        mean = x.mean(dim = -1, keepdim = True) # (batch, seq_len, 1)
        # Keep the dimension for broadcasting
        std = x.std(dim = -1, keepdim = True) # (batch, seq_len, 1)
        # eps is to prevent dividing by zero or when std is very small
        # print(f'mean shape {mean.squeeze(-1).shape}')
        return self.alpha * (x - mean) / (std + self.eps) + self.bias

class FeedForwardBlock(nn.Module):

    def __init__(self, d_model: int, d_ff: int, dropout: float) -> None:
        super().__init__()
        self.linear_1 = nn.Linear(d_model, d_ff) # w1 and b1
        self.dropout = nn.Dropout(dropout)
        self.linear_2 = nn.Linear(d_ff, d_model) # w2 and b2

    def forward(self, x):
        # (batch, seq_len, d_model) --> (batch, seq_len, d_ff) --> (batch, seq_len, d_model)
        return self.linear_2(self.dropout(torch.relu(self.linear_1(x))))

class InputEmbeddings(nn.Module):

    def __init__(self, d_model: int, vocab_size: int) -> None:
        super().__init__()
        self.d_model = d_model
        self.vocab_size = vocab_size
        self.embedding = nn.Embedding(vocab_size, d_model)

    def forward(self, x):
        # (batch, seq_len) --> (batch, seq_len, d_model)
        # Multiply by sqrt(d_model) to scale the embeddings according to the paper
        return self.embedding(x) * math.sqrt(self.d_model)
    
class PositionalEncoding(nn.Module):

    def __init__(self, d_model: int, seq_len: int, dropout: float) -> None:
        super().__init__()
        self.d_model = d_model
        self.seq_len = seq_len
        self.dropout = nn.Dropout(dropout)
        # Create a matrix of shape (seq_len, d_model)
        pe = torch.zeros(seq_len, d_model)
        # Create a vector of shape (seq_len)
        position = torch.arange(0, seq_len, dtype=torch.float).unsqueeze(1) # (seq_len, 1)
        # Create a vector of shape (d_model)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) # (d_model / 2)
        # Apply sine to even indices
        pe[:, 0::2] = torch.sin(position * div_term) # sin(position * (10000 ** (2i / d_model))
        # Apply cosine to odd indices
        pe[:, 1::2] = torch.cos(position * div_term) # cos(position * (10000 ** (2i / d_model))
        # Add a batch dimension to the positional encoding
        pe = pe.unsqueeze(0) # (1, seq_len, d_model)
        # Register the positional encoding as a buffer
        self.register_buffer('pe', pe)

    def forward(self, x):
        x = x + (self.pe[:, :x.shape[1], :]).requires_grad_(False) # (batch, seq_len, d_model)
        return self.dropout(x)

class ResidualConnection(nn.Module):
    
        def __init__(self, dropout: float) -> None:
            super().__init__()
            self.dropout = nn.Dropout(dropout)
            self.norm = LayerNormalization()
    
        def forward(self, x, sublayer):
            return x + self.dropout(sublayer(self.norm(x)))

class MultiHeadAttentionBlock(nn.Module):

    def __init__(self, d_model: int, h: int, dropout: float) -> None:
        super().__init__()
        self.d_model = d_model # Embedding vector size
        self.h = h # Number of heads
        # Make sure d_model is divisible by h
        assert d_model % h == 0, "d_model is not divisible by h"

        self.d_k = d_model // h # Dimension of vector seen by each head
        self.w_q = nn.Linear(d_model, d_model) # Wq
        self.w_k = nn.Linear(d_model, d_model) # Wk
        self.w_v = nn.Linear(d_model, d_model) # Wv
        self.w_o = nn.Linear(d_model, d_model) # Wo
        self.dropout = nn.Dropout(dropout)

    @staticmethod
    def attention(query, key, value, mask, dropout: nn.Dropout):
        d_k = query.shape[-1]
        # Just apply the formula from the paper
        # (batch, h, seq_len, d_k) --> (batch, h, seq_len, seq_len)
       
        attention_scores = (query @ key.transpose(-2, -1)) / math.sqrt(d_k)
       
       
        if mask is not None:
            # Write a very low value (indicating -inf) to the positions where mask == 0
            attention_scores.masked_fill_(mask == 0, -1e9)
        attention_scores = attention_scores.softmax(dim=-1) # (batch, h, seq_len, seq_len) # Apply softmax
        if dropout is not None:
            attention_scores = dropout(attention_scores)
        # (batch, h, seq_len, seq_len) --> (batch, h, seq_len, d_k)
        # return attention scores which can be used for visualization

        # attention_viz(attention_scores)
        return (attention_scores @ value), attention_scores

    def forward(self, q, k, v, mask, is_cross=False):
        query = self.w_q(q) # (batch, seq_len, d_model) --> (batch, seq_len, d_model)
        key = self.w_k(k) # (batch, seq_len, d_model) --> (batch, seq_len, d_model)
        value = self.w_v(v) # (batch, seq_len, d_model) --> (batch, seq_len, d_model)

        # (batch, seq_len, d_model) --> (batch, seq_len, h, d_k) --> (batch, h, seq_len, d_k)
        query = query.view(query.shape[0], query.shape[1], self.h, self.d_k).transpose(1, 2)
        key = key.view(key.shape[0], key.shape[1], self.h, self.d_k).transpose(1, 2)
        value = value.view(value.shape[0], value.shape[1], self.h, self.d_k).transpose(1, 2)

        # Calculate attention
        x, self.attention_scores = MultiHeadAttentionBlock.attention(query, key, value, mask, self.dropout)
        
        if is_cross:
            attention_viz(self.attention_scores)
        # Combine all the heads together
        # (batch, h, seq_len, d_k) --> (batch, seq_len, h, d_k) --> (batch, seq_len, d_model)
        x = x.transpose(1, 2).contiguous().view(x.shape[0], -1, self.h * self.d_k)

        # Multiply by Wo
        # (batch, seq_len, d_model) --> (batch, seq_len, d_model)  
        return self.w_o(x)

class EncoderBlock(nn.Module):

    def __init__(self, self_attention_block: MultiHeadAttentionBlock, feed_forward_block: FeedForwardBlock, dropout: float,  layer: int ) -> None:
        super().__init__()
        self.self_attention_block = self_attention_block
        self.feed_forward_block = feed_forward_block
        self.residual_connections = nn.ModuleList([ResidualConnection(dropout) for _ in range(2)])
        self.layer = layer

    def forward(self, x, src_mask, index):
        # print(x.shape)
        # print(self.layer)
        
        out = x[11]
        # out = self.residual_connections[1](out, self.feed_forward_block)
        return out
    
class Encoder(nn.Module):

    def __init__(self, layers: nn.ModuleList) -> None:
        super().__init__()
        self.layers = layers
        self.norm = LayerNormalization()

    def forward(self, x, mask):
        for index, layer in enumerate(self.layers):
        #     print(index)
            x = layer(x, mask, index)
            break
        return self.norm(x)

class DecoderBlock(nn.Module):

    def __init__(self, self_attention_block: MultiHeadAttentionBlock, cross_attention_block: MultiHeadAttentionBlock, feed_forward_block: FeedForwardBlock, dropout: float) -> None:
        super().__init__()
        self.self_attention_block = self_attention_block
        self.cross_attention_block = cross_attention_block
        self.feed_forward_block = feed_forward_block
        self.residual_connections = nn.ModuleList([ResidualConnection(dropout) for _ in range(3)])

    def forward(self, x, encoder_output, src_mask, tgt_mask):
        x = self.residual_connections[0](x, lambda x: self.self_attention_block(x, x, x, tgt_mask))
        x = self.residual_connections[1](x, lambda x: self.cross_attention_block(x, encoder_output, encoder_output, src_mask))
        x = self.residual_connections[2](x, self.feed_forward_block)
        
        return x
    
class Decoder(nn.Module):

    def __init__(self, layers: nn.ModuleList) -> None:
        super().__init__()
        self.layers = layers
        self.norm = LayerNormalization()

    def forward(self, x, encoder_output, src_mask, tgt_mask):
        for layer in self.layers:
            x = layer(x, encoder_output, src_mask, tgt_mask)
        return self.norm(x)

class ProjectionLayer(nn.Module):

    def __init__(self, d_model, vocab_size) -> None:
        super().__init__()
        self.proj = nn.Linear(d_model, vocab_size)

    def forward(self, x) -> None:
        # (batch, seq_len, d_model) --> (batch, seq_len, vocab_size)
        return torch.log_softmax(self.proj(x), dim = -1)
    
class Transformer(nn.Module):

    def __init__(self, encoder: Encoder, decoder: Decoder, tgt_embed: InputEmbeddings, tgt_pos: PositionalEncoding, projection_layer: ProjectionLayer, att: PretrainedVit) -> None:
        super().__init__()
        self.encoder = encoder
        self.decoder = decoder
        # self.src_embed = src_embed
        self.tgt_embed = tgt_embed
        # self.src_pos = src_pos
        self.tgt_pos = tgt_pos
        self.projection_layer = projection_layer
        self.patch_embed = PatchEmbed(img_size=224, patch_size=14)
        self.att = att

    def encode(self, src, src_mask):
        # (batch, seq_len, d_model)
        attention_list = self.att.forward(src)
        # src = self.src_pos(src)
        return self.encoder(attention_list[1:], src_mask)
    
    def decode(self, encoder_output: torch.Tensor, src_mask: torch.Tensor, tgt: torch.Tensor, tgt_mask: torch.Tensor):
        # (batch, seq_len, d_model)
       
        tgt = self.tgt_embed(tgt)
        tgt = self.tgt_pos(tgt)
        return self.decoder(tgt, encoder_output, src_mask, tgt_mask)
    
    def project(self, x):
        # (batch, seq_len, vocab_size)
        return self.projection_layer(x)

def build_transformer(tgt_vocab_size: int, tgt_seq_len: int, d_model: int=768, N: int=10, h: int=12, dropout: float=0.1, d_ff: int=3072) -> Transformer:
    # Create the embedding layers
  
    tgt_embed = InputEmbeddings(d_model, tgt_vocab_size)

    # Create the positional encoding layers
    # src_pos = PositionalEncoding(d_model, src_seq_len, dropout)
    tgt_pos = PositionalEncoding(d_model, tgt_seq_len, dropout)

    #attention from pretrained vit
    att = PretrainedVit()
    
    
    # Create the encoder blocks
    encoder_blocks = []
    for _ in range(N):
        print()
        encoder_self_attention_block = MultiHeadAttentionBlock(d_model, h, dropout)
        feed_forward_block = FeedForwardBlock(d_model, d_ff, dropout)
        encoder_block = EncoderBlock(encoder_self_attention_block, feed_forward_block, dropout, _)
        encoder_blocks.append(encoder_block)

    # Create the decoder blocks
    decoder_blocks = []
    for _ in range(N):
        decoder_self_attention_block = MultiHeadAttentionBlock(d_model, h, dropout)
        decoder_cross_attention_block = MultiHeadAttentionBlock(d_model, h, dropout)
        feed_forward_block = FeedForwardBlock(d_model, d_ff, dropout)
        decoder_block = DecoderBlock(decoder_self_attention_block, decoder_cross_attention_block, feed_forward_block, dropout)
        decoder_blocks.append(decoder_block)
    
    # Create the encoder and decoder
    encoder = Encoder(nn.ModuleList(encoder_blocks))
    decoder = Decoder(nn.ModuleList(decoder_blocks))
    
    # Create the projection layer
    projection_layer = ProjectionLayer(d_model, tgt_vocab_size)
    
    # Create the transformer
    transformer = Transformer(encoder, decoder,  tgt_embed, tgt_pos, projection_layer, att)
    
    # Initialize the parameters
    for p in transformer.parameters():
        if p.dim() > 1:
            nn.init.xavier_uniform_(p)
    
    return transformer