Spaces:
Sleeping
Sleeping
initial commit
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- Dockerfile +40 -0
- LICENSE +201 -0
- OUTPUT_MODEL/D_Amitaro.pth +3 -0
- OUTPUT_MODEL/G_Amitaro.pth +3 -0
- OUTPUT_MODEL/config.json +56 -0
- README.md +4 -5
- VC_inference.py +146 -0
- app.py +138 -0
- attentions.py +303 -0
- commons.py +164 -0
- configs/amitaro_jp_base.json +56 -0
- data_utils.py +276 -0
- dict/COPYING +100 -0
- dict/char.bin +3 -0
- dict/left-id.def +1377 -0
- dict/matrix.bin +3 -0
- dict/pos-id.def +69 -0
- dict/rewrite.def +94 -0
- dict/right-id.def +1377 -0
- dict/unk.dic +0 -0
- finetune_speaker_v2.py +351 -0
- losses.py +61 -0
- mel_processing.py +112 -0
- models.py +533 -0
- models_infer.py +402 -0
- modules.py +390 -0
- monotonic_align/__init__.py +19 -0
- monotonic_align/build/lib.linux-x86_64-cpython-310/monotonic_align/core.cpython-310-x86_64-linux-gnu.so +0 -0
- monotonic_align/build/lib.linux-x86_64-cpython-311/monotonic_align/core.cpython-311-x86_64-linux-gnu.so +0 -0
- monotonic_align/build/temp.linux-x86_64-cpython-310/core.o +0 -0
- monotonic_align/build/temp.linux-x86_64-cpython-311/core.o +0 -0
- monotonic_align/core.c +0 -0
- monotonic_align/core.pyx +42 -0
- monotonic_align/monotonic_align/core.cpython-310-x86_64-linux-gnu.so +0 -0
- monotonic_align/monotonic_align/core.cpython-311-x86_64-linux-gnu.so +0 -0
- monotonic_align/setup.py +9 -0
- preprocess_v2.py +153 -0
- requirements.txt +27 -0
- scripts/denoise_audio.py +22 -0
- scripts/download_model.py +4 -0
- scripts/download_video.py +37 -0
- scripts/long_audio_transcribe.py +75 -0
- scripts/rearrange_speaker.py +37 -0
- scripts/resample.py +20 -0
- scripts/short_audio_transcribe.py +91 -0
- scripts/video2audio.py +27 -0
- scripts/voice_upload.py +28 -0
- short_audio_transcribe.py +91 -0
- text/LICENSE +19 -0
- text/__init__.py +60 -0
Dockerfile
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.10
|
2 |
+
|
3 |
+
COPY ./requirements.txt /code/requirements.txt
|
4 |
+
|
5 |
+
RUN apt-get update
|
6 |
+
|
7 |
+
RUN apt-get install -y cmake
|
8 |
+
|
9 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
10 |
+
|
11 |
+
RUN pip install --no-cache-dir --upgrade --no-build-isolation pyopenjtalk
|
12 |
+
|
13 |
+
# Set up a new user named "user" with user ID 1000
|
14 |
+
RUN useradd -m -u 1000 user
|
15 |
+
|
16 |
+
# Switch to the "user" user
|
17 |
+
USER user
|
18 |
+
|
19 |
+
# Set home to the user's home directory
|
20 |
+
ENV HOME=/home/user \
|
21 |
+
PATH=/home/user/.local/bin:$PATH
|
22 |
+
|
23 |
+
# Set the working directory to the user's home directory
|
24 |
+
WORKDIR $HOME/app
|
25 |
+
|
26 |
+
COPY --chown=user . $HOME/app
|
27 |
+
|
28 |
+
#COPY ./open_jtalk_dic_utf_8-1.11.tar.gz /usr/local/lib/python3.10/site-packages/pyopenjtalk/dic.tar.gz
|
29 |
+
#RUN chmod 777 /usr/local/lib/python3.10/site-packages/pyopenjtalk/dic.tar.gz
|
30 |
+
|
31 |
+
#COPY --chown=user ./open_jtalk_dic_utf_8-1.11.tar.gz $HOME/app/dict/
|
32 |
+
#COPY --chown=user ./open_jtalk_dic_utf_8-1.11.tar.gz $HOME/app/dict/dic.tar.gz
|
33 |
+
|
34 |
+
COPY --chown=user ./dict/ $HOME/app/dict/
|
35 |
+
|
36 |
+
RUN chmod 777 -R $HOME/app/dict/
|
37 |
+
|
38 |
+
ENV OPEN_JTALK_DICT_DIR=$HOME/app/dict/
|
39 |
+
|
40 |
+
CMD ["python", "-u", "app.py"]
|
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
OUTPUT_MODEL/D_Amitaro.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4610d88f7ce89c54e7bbee6fe1a60b9c98ade40dc8ec052624d0fcac67d6676c
|
3 |
+
size 187027092
|
OUTPUT_MODEL/G_Amitaro.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7644eed4b2c8afd8102ba6ec231a81d620d3a9bd5b659c1481552a3b2d4fdbc9
|
3 |
+
size 158888169
|
OUTPUT_MODEL/config.json
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"eval_interval": 1000,
|
5 |
+
"seed": 1234,
|
6 |
+
"epochs": 10000,
|
7 |
+
"learning_rate": 2e-4,
|
8 |
+
"betas": [0.8, 0.99],
|
9 |
+
"eps": 1e-9,
|
10 |
+
"batch_size": 1,
|
11 |
+
"fp16_run": true,
|
12 |
+
"lr_decay": 0.999875,
|
13 |
+
"segment_size": 8192,
|
14 |
+
"init_lr_ratio": 1,
|
15 |
+
"warmup_epochs": 0,
|
16 |
+
"c_mel": 45,
|
17 |
+
"c_kl": 1.0
|
18 |
+
},
|
19 |
+
"data": {
|
20 |
+
"training_files":"./final_annotation_train.txt",
|
21 |
+
"validation_files":"./final_annotation_val.txt",
|
22 |
+
"text_cleaners":["japanese_cleaners"],
|
23 |
+
"max_wav_value": 32768.0,
|
24 |
+
"sampling_rate": 22050,
|
25 |
+
"filter_length": 1024,
|
26 |
+
"hop_length": 256,
|
27 |
+
"win_length": 1024,
|
28 |
+
"n_mel_channels": 80,
|
29 |
+
"mel_fmin": 0.0,
|
30 |
+
"mel_fmax": null,
|
31 |
+
"add_blank": true,
|
32 |
+
"n_speakers": 1,
|
33 |
+
"cleaned_text": true
|
34 |
+
},
|
35 |
+
"model": {
|
36 |
+
"inter_channels": 192,
|
37 |
+
"hidden_channels": 192,
|
38 |
+
"filter_channels": 768,
|
39 |
+
"n_heads": 2,
|
40 |
+
"n_layers": 6,
|
41 |
+
"kernel_size": 3,
|
42 |
+
"p_dropout": 0.1,
|
43 |
+
"resblock": "1",
|
44 |
+
"resblock_kernel_sizes": [3,7,11],
|
45 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
46 |
+
"upsample_rates": [8,8,2,2],
|
47 |
+
"upsample_initial_channel": 512,
|
48 |
+
"upsample_kernel_sizes": [16,16,4,4],
|
49 |
+
"n_layers_q": 3,
|
50 |
+
"use_spectral_norm": false,
|
51 |
+
"gin_channels": 256
|
52 |
+
},
|
53 |
+
"speakers": {"amitaro":0
|
54 |
+
},
|
55 |
+
"symbols": ["_", ",", ".", "!", "?", "-", "A", "E", "I", "N", "O", "Q", "U", "a", "b", "d", "e", "f", "g", "h", "i", "j", "k", "m", "n", "o", "p", "r", "s", "t", "u", "v", "w", "y", "z", "\u0283", "\u02a7", "\u2193", "\u2191", " "]
|
56 |
+
}
|
README.md
CHANGED
@@ -1,12 +1,11 @@
|
|
1 |
---
|
2 |
-
title: GPT4o VITS TTS SutouHaru
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.31.4
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: GPT4o VITS TTS SutouHaru
|
3 |
+
emoji: 🚀
|
4 |
+
colorFrom: blue
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.31.4
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
---
|
|
|
|
VC_inference.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from torch import no_grad, LongTensor
|
5 |
+
import argparse
|
6 |
+
import commons
|
7 |
+
from mel_processing import spectrogram_torch
|
8 |
+
import utils
|
9 |
+
from models import SynthesizerTrn
|
10 |
+
import gradio as gr
|
11 |
+
import librosa
|
12 |
+
import webbrowser
|
13 |
+
|
14 |
+
from text import text_to_sequence, _clean_text
|
15 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
16 |
+
import logging
|
17 |
+
logging.getLogger("PIL").setLevel(logging.WARNING)
|
18 |
+
logging.getLogger("urllib3").setLevel(logging.WARNING)
|
19 |
+
logging.getLogger("markdown_it").setLevel(logging.WARNING)
|
20 |
+
logging.getLogger("httpx").setLevel(logging.WARNING)
|
21 |
+
logging.getLogger("asyncio").setLevel(logging.WARNING)
|
22 |
+
|
23 |
+
language_marks = {
|
24 |
+
"Japanese": "",
|
25 |
+
"日本語": "[JA]",
|
26 |
+
"简体中文": "[ZH]",
|
27 |
+
"English": "[EN]",
|
28 |
+
"Mix": "",
|
29 |
+
}
|
30 |
+
lang = ['日本語', '简体中文', 'English', 'Mix']
|
31 |
+
def get_text(text, hps, is_symbol):
|
32 |
+
text_norm = text_to_sequence(text, hps.symbols, [] if is_symbol else hps.data.text_cleaners)
|
33 |
+
if hps.data.add_blank:
|
34 |
+
text_norm = commons.intersperse(text_norm, 0)
|
35 |
+
text_norm = LongTensor(text_norm)
|
36 |
+
return text_norm
|
37 |
+
|
38 |
+
def create_tts_fn(model, hps, speaker_ids):
|
39 |
+
def tts_fn(text, speaker, language, speed):
|
40 |
+
if language is not None:
|
41 |
+
text = language_marks[language] + text + language_marks[language]
|
42 |
+
speaker_id = speaker_ids[speaker]
|
43 |
+
stn_tst = get_text(text, hps, False)
|
44 |
+
with no_grad():
|
45 |
+
x_tst = stn_tst.unsqueeze(0).to(device)
|
46 |
+
x_tst_lengths = LongTensor([stn_tst.size(0)]).to(device)
|
47 |
+
sid = LongTensor([speaker_id]).to(device)
|
48 |
+
audio = model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8,
|
49 |
+
length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy()
|
50 |
+
del stn_tst, x_tst, x_tst_lengths, sid
|
51 |
+
return "Success", (hps.data.sampling_rate, audio)
|
52 |
+
|
53 |
+
return tts_fn
|
54 |
+
|
55 |
+
def create_vc_fn(model, hps, speaker_ids):
|
56 |
+
def vc_fn(original_speaker, target_speaker, record_audio, upload_audio):
|
57 |
+
input_audio = record_audio if record_audio is not None else upload_audio
|
58 |
+
if input_audio is None:
|
59 |
+
return "You need to record or upload an audio", None
|
60 |
+
sampling_rate, audio = input_audio
|
61 |
+
original_speaker_id = speaker_ids[original_speaker]
|
62 |
+
target_speaker_id = speaker_ids[target_speaker]
|
63 |
+
|
64 |
+
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
65 |
+
if len(audio.shape) > 1:
|
66 |
+
audio = librosa.to_mono(audio.transpose(1, 0))
|
67 |
+
if sampling_rate != hps.data.sampling_rate:
|
68 |
+
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=hps.data.sampling_rate)
|
69 |
+
with no_grad():
|
70 |
+
y = torch.FloatTensor(audio)
|
71 |
+
y = y / max(-y.min(), y.max()) / 0.99
|
72 |
+
y = y.to(device)
|
73 |
+
y = y.unsqueeze(0)
|
74 |
+
spec = spectrogram_torch(y, hps.data.filter_length,
|
75 |
+
hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
|
76 |
+
center=False).to(device)
|
77 |
+
spec_lengths = LongTensor([spec.size(-1)]).to(device)
|
78 |
+
sid_src = LongTensor([original_speaker_id]).to(device)
|
79 |
+
sid_tgt = LongTensor([target_speaker_id]).to(device)
|
80 |
+
audio = model.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[0][
|
81 |
+
0, 0].data.cpu().float().numpy()
|
82 |
+
del y, spec, spec_lengths, sid_src, sid_tgt
|
83 |
+
return "Success", (hps.data.sampling_rate, audio)
|
84 |
+
|
85 |
+
return vc_fn
|
86 |
+
if __name__ == "__main__":
|
87 |
+
parser = argparse.ArgumentParser()
|
88 |
+
parser.add_argument("--model_dir", default="./G_latest.pth", help="directory to your fine-tuned model")
|
89 |
+
parser.add_argument("--config_dir", default="./finetune_speaker.json", help="directory to your model config file")
|
90 |
+
parser.add_argument("--share", default=False, help="make link public (used in colab)")
|
91 |
+
|
92 |
+
args = parser.parse_args()
|
93 |
+
hps = utils.get_hparams_from_file(args.config_dir)
|
94 |
+
|
95 |
+
|
96 |
+
net_g = SynthesizerTrn(
|
97 |
+
len(hps.symbols),
|
98 |
+
hps.data.filter_length // 2 + 1,
|
99 |
+
hps.train.segment_size // hps.data.hop_length,
|
100 |
+
n_speakers=hps.data.n_speakers,
|
101 |
+
**hps.model).to(device)
|
102 |
+
_ = net_g.eval()
|
103 |
+
|
104 |
+
_ = utils.load_checkpoint(args.model_dir, net_g, None)
|
105 |
+
speaker_ids = hps.speakers
|
106 |
+
speakers = list(hps.speakers.keys())
|
107 |
+
tts_fn = create_tts_fn(net_g, hps, speaker_ids)
|
108 |
+
vc_fn = create_vc_fn(net_g, hps, speaker_ids)
|
109 |
+
app = gr.Blocks()
|
110 |
+
with app:
|
111 |
+
with gr.Tab("Text-to-Speech"):
|
112 |
+
with gr.Row():
|
113 |
+
with gr.Column():
|
114 |
+
textbox = gr.TextArea(label="Text",
|
115 |
+
placeholder="Type your sentence here",
|
116 |
+
value="こんにちわ。", elem_id=f"tts-input")
|
117 |
+
# select character
|
118 |
+
char_dropdown = gr.Dropdown(choices=speakers, value=speakers[0], label='character')
|
119 |
+
language_dropdown = gr.Dropdown(choices=lang, value=lang[0], label='language')
|
120 |
+
duration_slider = gr.Slider(minimum=0.1, maximum=5, value=1, step=0.1,
|
121 |
+
label='速度 Speed')
|
122 |
+
with gr.Column():
|
123 |
+
text_output = gr.Textbox(label="Message")
|
124 |
+
audio_output = gr.Audio(label="Output Audio", elem_id="tts-audio")
|
125 |
+
btn = gr.Button("Generate!")
|
126 |
+
btn.click(tts_fn,
|
127 |
+
inputs=[textbox, char_dropdown, language_dropdown, duration_slider,],
|
128 |
+
outputs=[text_output, audio_output])
|
129 |
+
with gr.Tab("Voice Conversion"):
|
130 |
+
gr.Markdown("""
|
131 |
+
录制或上传声音,并选择要转换的音色。
|
132 |
+
""")
|
133 |
+
with gr.Column():
|
134 |
+
record_audio = gr.Audio(label="record your voice", source="microphone")
|
135 |
+
upload_audio = gr.Audio(label="or upload audio here", source="upload")
|
136 |
+
source_speaker = gr.Dropdown(choices=speakers, value=speakers[0], label="source speaker")
|
137 |
+
target_speaker = gr.Dropdown(choices=speakers, value=speakers[0], label="target speaker")
|
138 |
+
with gr.Column():
|
139 |
+
message_box = gr.Textbox(label="Message")
|
140 |
+
converted_audio = gr.Audio(label='converted audio')
|
141 |
+
btn = gr.Button("Convert!")
|
142 |
+
btn.click(vc_fn, inputs=[source_speaker, target_speaker, record_audio, upload_audio],
|
143 |
+
outputs=[message_box, converted_audio])
|
144 |
+
webbrowser.open("http://127.0.0.1:7860")
|
145 |
+
app.launch(share=args.share)
|
146 |
+
|
app.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import utils
|
2 |
+
from models import SynthesizerTrn
|
3 |
+
import torch
|
4 |
+
from torch import no_grad, LongTensor
|
5 |
+
from text import text_to_sequence
|
6 |
+
import gradio as gr
|
7 |
+
import commons
|
8 |
+
import json
|
9 |
+
import os
|
10 |
+
import time
|
11 |
+
from openai import OpenAI
|
12 |
+
|
13 |
+
model_path = "./OUTPUT_MODEL/G_Amitaro.pth"
|
14 |
+
config_path = "./OUTPUT_MODEL/config.json"
|
15 |
+
sampling_rate = 22050
|
16 |
+
|
17 |
+
length = 1.0
|
18 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
19 |
+
|
20 |
+
def request_openai_message(input_text):
|
21 |
+
client = OpenAI(api_key=os.environ["GPT_API_TOKEN"])
|
22 |
+
init_str = """あなたの名前ははる。あなたは冒険者でこの町の隅っこに住んでいます。
|
23 |
+
好きな食べ物はカレー。エッチな質問やいたずらに対して沈黙してください。
|
24 |
+
町の名前はルコー。あなたは今暇なので、町案内をしている。
|
25 |
+
わからない質問されたら適当に答える。
|
26 |
+
返事は短くすること。会話で使わない文字も使わない。
|
27 |
+
酒場:町の東側にあって、酒の販売は17時からだが、食事なら11時から。メニューはカレー、ステーキ、野菜スープ、ソーセージなど。24時までやっている
|
28 |
+
冒険者ギルド:町の中央広場にある。24時間受付だが、新人登録は受付がいる10時から19時の間だ。お使いクエストや討伐クエストなど受けることができる。
|
29 |
+
ポーション屋:町の南側にある。冒険に必須のポーションを売っている店だ。店長の対応はドライだが、実は人見知りだけで、普通に優しい。定番のポーション以外も受注生産承るので、欲しいポーションがなければ聞いてみた方がいい。
|
30 |
+
雑貨店:冒険者ギルドの隣にある。日用品から冒険者用アイテムまで売っている。
|
31 |
+
"""
|
32 |
+
messages=[
|
33 |
+
{"role": "system", "content": init_str},
|
34 |
+
]
|
35 |
+
|
36 |
+
text_log = input_text.split("|")
|
37 |
+
for val in text_log:
|
38 |
+
userind = val.find("user:")
|
39 |
+
assistantind = val.find("assistant:")
|
40 |
+
# just in case, remove conversation tag
|
41 |
+
val = val.replace("user:","")
|
42 |
+
val = val.replace("assistant:","")
|
43 |
+
if userind != -1:
|
44 |
+
messages.append({"role": "user", "content": val})
|
45 |
+
elif assistantind != -1:
|
46 |
+
messages.append({"role": "assistant", "content": val})
|
47 |
+
|
48 |
+
text = ""
|
49 |
+
retry_count = 0
|
50 |
+
while text == "" and retry_count < 3:
|
51 |
+
try:
|
52 |
+
response = client.chat.completions.create(model="gpt-4o", messages=messages)
|
53 |
+
print("Response from openai is : ")
|
54 |
+
print(response)
|
55 |
+
text = response.choices[0].message.content
|
56 |
+
except Exception as inst:
|
57 |
+
print(type(inst)) # the exception type
|
58 |
+
print(inst.args) # arguments stored in .args
|
59 |
+
print(inst)
|
60 |
+
retry_count += 1
|
61 |
+
time.sleep(1)
|
62 |
+
|
63 |
+
text = text.replace("user:","")
|
64 |
+
text = text.replace("assistant:","")
|
65 |
+
|
66 |
+
return text
|
67 |
+
|
68 |
+
def process_text(text):
|
69 |
+
# remove newline
|
70 |
+
text = text.replace("\r\n","。")
|
71 |
+
text = text.replace("\n","。")
|
72 |
+
return text
|
73 |
+
|
74 |
+
def tts(text):
|
75 |
+
hps = utils.get_hparams_from_file(config_path)
|
76 |
+
net_g = SynthesizerTrn(
|
77 |
+
len(hps.symbols),
|
78 |
+
hps.data.filter_length // 2 + 1,
|
79 |
+
hps.train.segment_size // hps.data.hop_length,
|
80 |
+
n_speakers=hps.data.n_speakers,
|
81 |
+
**hps.model).to(device)
|
82 |
+
_ = net_g.eval()
|
83 |
+
_ = utils.load_checkpoint(model_path, net_g, None)
|
84 |
+
|
85 |
+
speaker_ids = hps.speakers
|
86 |
+
|
87 |
+
speaker_id = 0
|
88 |
+
stn_tst = get_text(text, hps, False)
|
89 |
+
with no_grad():
|
90 |
+
x_tst = stn_tst.unsqueeze(0).to(device)
|
91 |
+
x_tst_lengths = LongTensor([stn_tst.size(0)]).to(device)
|
92 |
+
sid = LongTensor([speaker_id]).to(device)
|
93 |
+
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.6,
|
94 |
+
length_scale=1.0 / length)[0][0, 0].data.cpu().float().numpy()
|
95 |
+
del stn_tst, x_tst, x_tst_lengths, sid
|
96 |
+
|
97 |
+
return audio
|
98 |
+
|
99 |
+
def get_text(text, hps, is_symbol):
|
100 |
+
text_norm = text_to_sequence(text, hps.symbols, [] if is_symbol else hps.data.text_cleaners)
|
101 |
+
if hps.data.add_blank:
|
102 |
+
text_norm = commons.intersperse(text_norm, 0)
|
103 |
+
text_norm = LongTensor(text_norm)
|
104 |
+
return text_norm
|
105 |
+
|
106 |
+
def get_vits_array(input_text, flag):
|
107 |
+
|
108 |
+
print(flag, " : ", input_text)
|
109 |
+
# for mokuran webgl
|
110 |
+
if flag == "mokuran":
|
111 |
+
text = request_openai_message(input_text)
|
112 |
+
text = process_text(text)
|
113 |
+
audio = tts(text)
|
114 |
+
return {"utterance": text, "audio_wave": audio.tolist()}, None
|
115 |
+
|
116 |
+
elif flag == "audio_array":
|
117 |
+
audio = tts(input_text)
|
118 |
+
return {"input_text": input_text, "sampling_rate": sampling_rate, "audio_wave": audio.tolist()}, None
|
119 |
+
|
120 |
+
# for tts api
|
121 |
+
elif flag == "audio_file":
|
122 |
+
audio = tts(input_text)
|
123 |
+
return "", (sampling_rate, audio)
|
124 |
+
|
125 |
+
else:
|
126 |
+
raise Exception("Unknown flag : [" + flag + "]")
|
127 |
+
|
128 |
+
gradio_interface = gr.Interface(
|
129 |
+
fn = get_vits_array,
|
130 |
+
inputs = ["text", "text"],
|
131 |
+
outputs = ["text", "audio"]
|
132 |
+
)
|
133 |
+
|
134 |
+
# for using with nginx docker environment, note that root path change according to nginx configuration
|
135 |
+
gradio_interface.launch(server_name="0.0.0.0", server_port=7860, root_path="/mokuran")
|
136 |
+
|
137 |
+
# for standalone server (with ssl)
|
138 |
+
#gradio_interface.launch(server_name="0.0.0.0", server_port=7860, ssl_keyfile="privkey.pem", ssl_certfile="fullchain.pem", ssl_verify=False)
|
attentions.py
ADDED
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
import commons
|
9 |
+
import modules
|
10 |
+
from modules import LayerNorm
|
11 |
+
|
12 |
+
|
13 |
+
class Encoder(nn.Module):
|
14 |
+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
|
15 |
+
super().__init__()
|
16 |
+
self.hidden_channels = hidden_channels
|
17 |
+
self.filter_channels = filter_channels
|
18 |
+
self.n_heads = n_heads
|
19 |
+
self.n_layers = n_layers
|
20 |
+
self.kernel_size = kernel_size
|
21 |
+
self.p_dropout = p_dropout
|
22 |
+
self.window_size = window_size
|
23 |
+
|
24 |
+
self.drop = nn.Dropout(p_dropout)
|
25 |
+
self.attn_layers = nn.ModuleList()
|
26 |
+
self.norm_layers_1 = nn.ModuleList()
|
27 |
+
self.ffn_layers = nn.ModuleList()
|
28 |
+
self.norm_layers_2 = nn.ModuleList()
|
29 |
+
for i in range(self.n_layers):
|
30 |
+
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
|
31 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
32 |
+
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
|
33 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
34 |
+
|
35 |
+
def forward(self, x, x_mask):
|
36 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
37 |
+
x = x * x_mask
|
38 |
+
for i in range(self.n_layers):
|
39 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
40 |
+
y = self.drop(y)
|
41 |
+
x = self.norm_layers_1[i](x + y)
|
42 |
+
|
43 |
+
y = self.ffn_layers[i](x, x_mask)
|
44 |
+
y = self.drop(y)
|
45 |
+
x = self.norm_layers_2[i](x + y)
|
46 |
+
x = x * x_mask
|
47 |
+
return x
|
48 |
+
|
49 |
+
|
50 |
+
class Decoder(nn.Module):
|
51 |
+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
|
52 |
+
super().__init__()
|
53 |
+
self.hidden_channels = hidden_channels
|
54 |
+
self.filter_channels = filter_channels
|
55 |
+
self.n_heads = n_heads
|
56 |
+
self.n_layers = n_layers
|
57 |
+
self.kernel_size = kernel_size
|
58 |
+
self.p_dropout = p_dropout
|
59 |
+
self.proximal_bias = proximal_bias
|
60 |
+
self.proximal_init = proximal_init
|
61 |
+
|
62 |
+
self.drop = nn.Dropout(p_dropout)
|
63 |
+
self.self_attn_layers = nn.ModuleList()
|
64 |
+
self.norm_layers_0 = nn.ModuleList()
|
65 |
+
self.encdec_attn_layers = nn.ModuleList()
|
66 |
+
self.norm_layers_1 = nn.ModuleList()
|
67 |
+
self.ffn_layers = nn.ModuleList()
|
68 |
+
self.norm_layers_2 = nn.ModuleList()
|
69 |
+
for i in range(self.n_layers):
|
70 |
+
self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
|
71 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
72 |
+
self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
|
73 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
74 |
+
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
|
75 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
76 |
+
|
77 |
+
def forward(self, x, x_mask, h, h_mask):
|
78 |
+
"""
|
79 |
+
x: decoder input
|
80 |
+
h: encoder output
|
81 |
+
"""
|
82 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
|
83 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
84 |
+
x = x * x_mask
|
85 |
+
for i in range(self.n_layers):
|
86 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
87 |
+
y = self.drop(y)
|
88 |
+
x = self.norm_layers_0[i](x + y)
|
89 |
+
|
90 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
91 |
+
y = self.drop(y)
|
92 |
+
x = self.norm_layers_1[i](x + y)
|
93 |
+
|
94 |
+
y = self.ffn_layers[i](x, x_mask)
|
95 |
+
y = self.drop(y)
|
96 |
+
x = self.norm_layers_2[i](x + y)
|
97 |
+
x = x * x_mask
|
98 |
+
return x
|
99 |
+
|
100 |
+
|
101 |
+
class MultiHeadAttention(nn.Module):
|
102 |
+
def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
|
103 |
+
super().__init__()
|
104 |
+
assert channels % n_heads == 0
|
105 |
+
|
106 |
+
self.channels = channels
|
107 |
+
self.out_channels = out_channels
|
108 |
+
self.n_heads = n_heads
|
109 |
+
self.p_dropout = p_dropout
|
110 |
+
self.window_size = window_size
|
111 |
+
self.heads_share = heads_share
|
112 |
+
self.block_length = block_length
|
113 |
+
self.proximal_bias = proximal_bias
|
114 |
+
self.proximal_init = proximal_init
|
115 |
+
self.attn = None
|
116 |
+
|
117 |
+
self.k_channels = channels // n_heads
|
118 |
+
self.conv_q = nn.Conv1d(channels, channels, 1)
|
119 |
+
self.conv_k = nn.Conv1d(channels, channels, 1)
|
120 |
+
self.conv_v = nn.Conv1d(channels, channels, 1)
|
121 |
+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
122 |
+
self.drop = nn.Dropout(p_dropout)
|
123 |
+
|
124 |
+
if window_size is not None:
|
125 |
+
n_heads_rel = 1 if heads_share else n_heads
|
126 |
+
rel_stddev = self.k_channels**-0.5
|
127 |
+
self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
128 |
+
self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
129 |
+
|
130 |
+
nn.init.xavier_uniform_(self.conv_q.weight)
|
131 |
+
nn.init.xavier_uniform_(self.conv_k.weight)
|
132 |
+
nn.init.xavier_uniform_(self.conv_v.weight)
|
133 |
+
if proximal_init:
|
134 |
+
with torch.no_grad():
|
135 |
+
self.conv_k.weight.copy_(self.conv_q.weight)
|
136 |
+
self.conv_k.bias.copy_(self.conv_q.bias)
|
137 |
+
|
138 |
+
def forward(self, x, c, attn_mask=None):
|
139 |
+
q = self.conv_q(x)
|
140 |
+
k = self.conv_k(c)
|
141 |
+
v = self.conv_v(c)
|
142 |
+
|
143 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
144 |
+
|
145 |
+
x = self.conv_o(x)
|
146 |
+
return x
|
147 |
+
|
148 |
+
def attention(self, query, key, value, mask=None):
|
149 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
150 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
151 |
+
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
152 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
153 |
+
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
154 |
+
|
155 |
+
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
156 |
+
if self.window_size is not None:
|
157 |
+
assert t_s == t_t, "Relative attention is only available for self-attention."
|
158 |
+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
159 |
+
rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
|
160 |
+
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
161 |
+
scores = scores + scores_local
|
162 |
+
if self.proximal_bias:
|
163 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
164 |
+
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
|
165 |
+
if mask is not None:
|
166 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
167 |
+
if self.block_length is not None:
|
168 |
+
assert t_s == t_t, "Local attention is only available for self-attention."
|
169 |
+
block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
|
170 |
+
scores = scores.masked_fill(block_mask == 0, -1e4)
|
171 |
+
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
172 |
+
p_attn = self.drop(p_attn)
|
173 |
+
output = torch.matmul(p_attn, value)
|
174 |
+
if self.window_size is not None:
|
175 |
+
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
176 |
+
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
|
177 |
+
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
|
178 |
+
output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
179 |
+
return output, p_attn
|
180 |
+
|
181 |
+
def _matmul_with_relative_values(self, x, y):
|
182 |
+
"""
|
183 |
+
x: [b, h, l, m]
|
184 |
+
y: [h or 1, m, d]
|
185 |
+
ret: [b, h, l, d]
|
186 |
+
"""
|
187 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
188 |
+
return ret
|
189 |
+
|
190 |
+
def _matmul_with_relative_keys(self, x, y):
|
191 |
+
"""
|
192 |
+
x: [b, h, l, d]
|
193 |
+
y: [h or 1, m, d]
|
194 |
+
ret: [b, h, l, m]
|
195 |
+
"""
|
196 |
+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
197 |
+
return ret
|
198 |
+
|
199 |
+
def _get_relative_embeddings(self, relative_embeddings, length):
|
200 |
+
max_relative_position = 2 * self.window_size + 1
|
201 |
+
# Pad first before slice to avoid using cond ops.
|
202 |
+
pad_length = max(length - (self.window_size + 1), 0)
|
203 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
204 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
205 |
+
if pad_length > 0:
|
206 |
+
padded_relative_embeddings = F.pad(
|
207 |
+
relative_embeddings,
|
208 |
+
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
|
209 |
+
else:
|
210 |
+
padded_relative_embeddings = relative_embeddings
|
211 |
+
used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
|
212 |
+
return used_relative_embeddings
|
213 |
+
|
214 |
+
def _relative_position_to_absolute_position(self, x):
|
215 |
+
"""
|
216 |
+
x: [b, h, l, 2*l-1]
|
217 |
+
ret: [b, h, l, l]
|
218 |
+
"""
|
219 |
+
batch, heads, length, _ = x.size()
|
220 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
221 |
+
x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
|
222 |
+
|
223 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
224 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
225 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
|
226 |
+
|
227 |
+
# Reshape and slice out the padded elements.
|
228 |
+
x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
|
229 |
+
return x_final
|
230 |
+
|
231 |
+
def _absolute_position_to_relative_position(self, x):
|
232 |
+
"""
|
233 |
+
x: [b, h, l, l]
|
234 |
+
ret: [b, h, l, 2*l-1]
|
235 |
+
"""
|
236 |
+
batch, heads, length, _ = x.size()
|
237 |
+
# padd along column
|
238 |
+
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
|
239 |
+
x_flat = x.view([batch, heads, length**2 + length*(length -1)])
|
240 |
+
# add 0's in the beginning that will skew the elements after reshape
|
241 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
242 |
+
x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
|
243 |
+
return x_final
|
244 |
+
|
245 |
+
def _attention_bias_proximal(self, length):
|
246 |
+
"""Bias for self-attention to encourage attention to close positions.
|
247 |
+
Args:
|
248 |
+
length: an integer scalar.
|
249 |
+
Returns:
|
250 |
+
a Tensor with shape [1, 1, length, length]
|
251 |
+
"""
|
252 |
+
r = torch.arange(length, dtype=torch.float32)
|
253 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
254 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
255 |
+
|
256 |
+
|
257 |
+
class FFN(nn.Module):
|
258 |
+
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
|
259 |
+
super().__init__()
|
260 |
+
self.in_channels = in_channels
|
261 |
+
self.out_channels = out_channels
|
262 |
+
self.filter_channels = filter_channels
|
263 |
+
self.kernel_size = kernel_size
|
264 |
+
self.p_dropout = p_dropout
|
265 |
+
self.activation = activation
|
266 |
+
self.causal = causal
|
267 |
+
|
268 |
+
if causal:
|
269 |
+
self.padding = self._causal_padding
|
270 |
+
else:
|
271 |
+
self.padding = self._same_padding
|
272 |
+
|
273 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
274 |
+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
275 |
+
self.drop = nn.Dropout(p_dropout)
|
276 |
+
|
277 |
+
def forward(self, x, x_mask):
|
278 |
+
x = self.conv_1(self.padding(x * x_mask))
|
279 |
+
if self.activation == "gelu":
|
280 |
+
x = x * torch.sigmoid(1.702 * x)
|
281 |
+
else:
|
282 |
+
x = torch.relu(x)
|
283 |
+
x = self.drop(x)
|
284 |
+
x = self.conv_2(self.padding(x * x_mask))
|
285 |
+
return x * x_mask
|
286 |
+
|
287 |
+
def _causal_padding(self, x):
|
288 |
+
if self.kernel_size == 1:
|
289 |
+
return x
|
290 |
+
pad_l = self.kernel_size - 1
|
291 |
+
pad_r = 0
|
292 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
293 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
294 |
+
return x
|
295 |
+
|
296 |
+
def _same_padding(self, x):
|
297 |
+
if self.kernel_size == 1:
|
298 |
+
return x
|
299 |
+
pad_l = (self.kernel_size - 1) // 2
|
300 |
+
pad_r = self.kernel_size // 2
|
301 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
302 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
303 |
+
return x
|
commons.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
|
8 |
+
def init_weights(m, mean=0.0, std=0.01):
|
9 |
+
classname = m.__class__.__name__
|
10 |
+
if classname.find("Conv") != -1:
|
11 |
+
m.weight.data.normal_(mean, std)
|
12 |
+
|
13 |
+
|
14 |
+
def get_padding(kernel_size, dilation=1):
|
15 |
+
return int((kernel_size*dilation - dilation)/2)
|
16 |
+
|
17 |
+
|
18 |
+
def convert_pad_shape(pad_shape):
|
19 |
+
l = pad_shape[::-1]
|
20 |
+
pad_shape = [item for sublist in l for item in sublist]
|
21 |
+
return pad_shape
|
22 |
+
|
23 |
+
|
24 |
+
def intersperse(lst, item):
|
25 |
+
result = [item] * (len(lst) * 2 + 1)
|
26 |
+
result[1::2] = lst
|
27 |
+
return result
|
28 |
+
|
29 |
+
|
30 |
+
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
31 |
+
"""KL(P||Q)"""
|
32 |
+
kl = (logs_q - logs_p) - 0.5
|
33 |
+
kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
|
34 |
+
return kl
|
35 |
+
|
36 |
+
|
37 |
+
def rand_gumbel(shape):
|
38 |
+
"""Sample from the Gumbel distribution, protect from overflows."""
|
39 |
+
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
40 |
+
return -torch.log(-torch.log(uniform_samples))
|
41 |
+
|
42 |
+
|
43 |
+
def rand_gumbel_like(x):
|
44 |
+
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
45 |
+
return g
|
46 |
+
|
47 |
+
|
48 |
+
def slice_segments(x, ids_str, segment_size=4):
|
49 |
+
ret = torch.zeros_like(x[:, :, :segment_size])
|
50 |
+
for i in range(x.size(0)):
|
51 |
+
idx_str = ids_str[i]
|
52 |
+
idx_end = idx_str + segment_size
|
53 |
+
try:
|
54 |
+
ret[i] = x[i, :, idx_str:idx_end]
|
55 |
+
except RuntimeError:
|
56 |
+
print("?")
|
57 |
+
return ret
|
58 |
+
|
59 |
+
|
60 |
+
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
61 |
+
b, d, t = x.size()
|
62 |
+
if x_lengths is None:
|
63 |
+
x_lengths = t
|
64 |
+
ids_str_max = x_lengths - segment_size + 1
|
65 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
66 |
+
ret = slice_segments(x, ids_str, segment_size)
|
67 |
+
return ret, ids_str
|
68 |
+
|
69 |
+
|
70 |
+
def get_timing_signal_1d(
|
71 |
+
length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
72 |
+
position = torch.arange(length, dtype=torch.float)
|
73 |
+
num_timescales = channels // 2
|
74 |
+
log_timescale_increment = (
|
75 |
+
math.log(float(max_timescale) / float(min_timescale)) /
|
76 |
+
(num_timescales - 1))
|
77 |
+
inv_timescales = min_timescale * torch.exp(
|
78 |
+
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
|
79 |
+
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
80 |
+
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
81 |
+
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
82 |
+
signal = signal.view(1, channels, length)
|
83 |
+
return signal
|
84 |
+
|
85 |
+
|
86 |
+
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
87 |
+
b, channels, length = x.size()
|
88 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
89 |
+
return x + signal.to(dtype=x.dtype, device=x.device)
|
90 |
+
|
91 |
+
|
92 |
+
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
93 |
+
b, channels, length = x.size()
|
94 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
95 |
+
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
96 |
+
|
97 |
+
|
98 |
+
def subsequent_mask(length):
|
99 |
+
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
100 |
+
return mask
|
101 |
+
|
102 |
+
|
103 |
+
@torch.jit.script
|
104 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
105 |
+
n_channels_int = n_channels[0]
|
106 |
+
in_act = input_a + input_b
|
107 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
108 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
109 |
+
acts = t_act * s_act
|
110 |
+
return acts
|
111 |
+
|
112 |
+
|
113 |
+
def convert_pad_shape(pad_shape):
|
114 |
+
l = pad_shape[::-1]
|
115 |
+
pad_shape = [item for sublist in l for item in sublist]
|
116 |
+
return pad_shape
|
117 |
+
|
118 |
+
|
119 |
+
def shift_1d(x):
|
120 |
+
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
121 |
+
return x
|
122 |
+
|
123 |
+
|
124 |
+
def sequence_mask(length, max_length=None):
|
125 |
+
if max_length is None:
|
126 |
+
max_length = length.max()
|
127 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
128 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
129 |
+
|
130 |
+
|
131 |
+
def generate_path(duration, mask):
|
132 |
+
"""
|
133 |
+
duration: [b, 1, t_x]
|
134 |
+
mask: [b, 1, t_y, t_x]
|
135 |
+
"""
|
136 |
+
device = duration.device
|
137 |
+
|
138 |
+
b, _, t_y, t_x = mask.shape
|
139 |
+
cum_duration = torch.cumsum(duration, -1)
|
140 |
+
|
141 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
142 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
143 |
+
path = path.view(b, t_x, t_y)
|
144 |
+
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
145 |
+
path = path.unsqueeze(1).transpose(2,3) * mask
|
146 |
+
return path
|
147 |
+
|
148 |
+
|
149 |
+
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
150 |
+
if isinstance(parameters, torch.Tensor):
|
151 |
+
parameters = [parameters]
|
152 |
+
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
153 |
+
norm_type = float(norm_type)
|
154 |
+
if clip_value is not None:
|
155 |
+
clip_value = float(clip_value)
|
156 |
+
|
157 |
+
total_norm = 0
|
158 |
+
for p in parameters:
|
159 |
+
param_norm = p.grad.data.norm(norm_type)
|
160 |
+
total_norm += param_norm.item() ** norm_type
|
161 |
+
if clip_value is not None:
|
162 |
+
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
163 |
+
total_norm = total_norm ** (1. / norm_type)
|
164 |
+
return total_norm
|
configs/amitaro_jp_base.json
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"eval_interval": 1000,
|
5 |
+
"seed": 1234,
|
6 |
+
"epochs": 10000,
|
7 |
+
"learning_rate": 2e-4,
|
8 |
+
"betas": [0.8, 0.99],
|
9 |
+
"eps": 1e-9,
|
10 |
+
"batch_size": 1,
|
11 |
+
"fp16_run": true,
|
12 |
+
"lr_decay": 0.999875,
|
13 |
+
"segment_size": 8192,
|
14 |
+
"init_lr_ratio": 1,
|
15 |
+
"warmup_epochs": 0,
|
16 |
+
"c_mel": 45,
|
17 |
+
"c_kl": 1.0
|
18 |
+
},
|
19 |
+
"data": {
|
20 |
+
"training_files":"./final_annotation_train.txt",
|
21 |
+
"validation_files":"./final_annotation_val.txt",
|
22 |
+
"text_cleaners":["japanese_cleaners"],
|
23 |
+
"max_wav_value": 32768.0,
|
24 |
+
"sampling_rate": 22050,
|
25 |
+
"filter_length": 1024,
|
26 |
+
"hop_length": 256,
|
27 |
+
"win_length": 1024,
|
28 |
+
"n_mel_channels": 80,
|
29 |
+
"mel_fmin": 0.0,
|
30 |
+
"mel_fmax": null,
|
31 |
+
"add_blank": true,
|
32 |
+
"n_speakers": 1,
|
33 |
+
"cleaned_text": true
|
34 |
+
},
|
35 |
+
"model": {
|
36 |
+
"inter_channels": 192,
|
37 |
+
"hidden_channels": 192,
|
38 |
+
"filter_channels": 768,
|
39 |
+
"n_heads": 2,
|
40 |
+
"n_layers": 6,
|
41 |
+
"kernel_size": 3,
|
42 |
+
"p_dropout": 0.1,
|
43 |
+
"resblock": "1",
|
44 |
+
"resblock_kernel_sizes": [3,7,11],
|
45 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
46 |
+
"upsample_rates": [8,8,2,2],
|
47 |
+
"upsample_initial_channel": 512,
|
48 |
+
"upsample_kernel_sizes": [16,16,4,4],
|
49 |
+
"n_layers_q": 3,
|
50 |
+
"use_spectral_norm": false,
|
51 |
+
"gin_channels": 256
|
52 |
+
},
|
53 |
+
"speakers": {"amitaro":0
|
54 |
+
},
|
55 |
+
"symbols": ["_", ",", ".", "!", "?", "-", "A", "E", "I", "N", "O", "Q", "U", "a", "b", "d", "e", "f", "g", "h", "i", "j", "k", "m", "n", "o", "p", "r", "s", "t", "u", "v", "w", "y", "z", "\u0283", "\u02a7", "\u2193", "\u2191", " "]
|
56 |
+
}
|
data_utils.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.utils.data
|
7 |
+
import torchaudio
|
8 |
+
|
9 |
+
import commons
|
10 |
+
from mel_processing import spectrogram_torch
|
11 |
+
from utils import load_wav_to_torch, load_filepaths_and_text
|
12 |
+
from text import text_to_sequence, cleaned_text_to_sequence
|
13 |
+
"""Multi speaker version"""
|
14 |
+
|
15 |
+
|
16 |
+
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
17 |
+
"""
|
18 |
+
1) loads audio, speaker_id, text pairs
|
19 |
+
2) normalizes text and converts them to sequences of integers
|
20 |
+
3) computes spectrograms from audio files.
|
21 |
+
"""
|
22 |
+
|
23 |
+
def __init__(self, audiopaths_sid_text, hparams, symbols):
|
24 |
+
self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text)
|
25 |
+
self.text_cleaners = hparams.text_cleaners
|
26 |
+
self.max_wav_value = hparams.max_wav_value
|
27 |
+
self.sampling_rate = hparams.sampling_rate
|
28 |
+
self.filter_length = hparams.filter_length
|
29 |
+
self.hop_length = hparams.hop_length
|
30 |
+
self.win_length = hparams.win_length
|
31 |
+
self.sampling_rate = hparams.sampling_rate
|
32 |
+
|
33 |
+
self.cleaned_text = getattr(hparams, "cleaned_text", False)
|
34 |
+
|
35 |
+
self.add_blank = hparams.add_blank
|
36 |
+
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
37 |
+
self.max_text_len = getattr(hparams, "max_text_len", 190)
|
38 |
+
self.symbols = symbols
|
39 |
+
|
40 |
+
random.seed(1234)
|
41 |
+
random.shuffle(self.audiopaths_sid_text)
|
42 |
+
self._filter()
|
43 |
+
|
44 |
+
def _filter(self):
|
45 |
+
"""
|
46 |
+
Filter text & store spec lengths
|
47 |
+
"""
|
48 |
+
# Store spectrogram lengths for Bucketing
|
49 |
+
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
|
50 |
+
# spec_length = wav_length // hop_length
|
51 |
+
|
52 |
+
audiopaths_sid_text_new = []
|
53 |
+
lengths = []
|
54 |
+
for audiopath, sid, text in self.audiopaths_sid_text:
|
55 |
+
# audiopath = "./user_voice/" + audiopath
|
56 |
+
|
57 |
+
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
|
58 |
+
audiopaths_sid_text_new.append([audiopath, sid, text])
|
59 |
+
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
|
60 |
+
self.audiopaths_sid_text = audiopaths_sid_text_new
|
61 |
+
self.lengths = lengths
|
62 |
+
|
63 |
+
def get_audio_text_speaker_pair(self, audiopath_sid_text):
|
64 |
+
# separate filename, speaker_id and text
|
65 |
+
audiopath, sid, text = audiopath_sid_text[0], audiopath_sid_text[1], audiopath_sid_text[2]
|
66 |
+
text = self.get_text(text)
|
67 |
+
spec, wav = self.get_audio(audiopath)
|
68 |
+
sid = self.get_sid(sid)
|
69 |
+
return (text, spec, wav, sid)
|
70 |
+
|
71 |
+
def get_audio(self, filename):
|
72 |
+
# audio, sampling_rate = load_wav_to_torch(filename)
|
73 |
+
# if sampling_rate != self.sampling_rate:
|
74 |
+
# raise ValueError("{} {} SR doesn't match target {} SR".format(
|
75 |
+
# sampling_rate, self.sampling_rate))
|
76 |
+
# audio_norm = audio / self.max_wav_value if audio.max() > 10 else audio
|
77 |
+
# audio_norm = audio_norm.unsqueeze(0)
|
78 |
+
audio_norm, sampling_rate = torchaudio.load(filename, frame_offset=0, num_frames=-1, normalize=True, channels_first=True)
|
79 |
+
# spec_filename = filename.replace(".wav", ".spec.pt")
|
80 |
+
# if os.path.exists(spec_filename):
|
81 |
+
# spec = torch.load(spec_filename)
|
82 |
+
# else:
|
83 |
+
# try:
|
84 |
+
spec = spectrogram_torch(audio_norm, self.filter_length,
|
85 |
+
self.sampling_rate, self.hop_length, self.win_length,
|
86 |
+
center=False)
|
87 |
+
spec = spec.squeeze(0)
|
88 |
+
# except NotImplementedError:
|
89 |
+
# print("?")
|
90 |
+
# spec = torch.squeeze(spec, 0)
|
91 |
+
# torch.save(spec, spec_filename)
|
92 |
+
return spec, audio_norm
|
93 |
+
|
94 |
+
def get_text(self, text):
|
95 |
+
if self.cleaned_text:
|
96 |
+
text_norm = cleaned_text_to_sequence(text, self.symbols)
|
97 |
+
else:
|
98 |
+
text_norm = text_to_sequence(text, self.text_cleaners)
|
99 |
+
if self.add_blank:
|
100 |
+
text_norm = commons.intersperse(text_norm, 0)
|
101 |
+
text_norm = torch.LongTensor(text_norm)
|
102 |
+
return text_norm
|
103 |
+
|
104 |
+
def get_sid(self, sid):
|
105 |
+
sid = torch.LongTensor([int(sid)])
|
106 |
+
return sid
|
107 |
+
|
108 |
+
def __getitem__(self, index):
|
109 |
+
return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
|
110 |
+
|
111 |
+
def __len__(self):
|
112 |
+
return len(self.audiopaths_sid_text)
|
113 |
+
|
114 |
+
|
115 |
+
class TextAudioSpeakerCollate():
|
116 |
+
""" Zero-pads model inputs and targets
|
117 |
+
"""
|
118 |
+
|
119 |
+
def __init__(self, return_ids=False):
|
120 |
+
self.return_ids = return_ids
|
121 |
+
|
122 |
+
def __call__(self, batch):
|
123 |
+
"""Collate's training batch from normalized text, audio and speaker identities
|
124 |
+
PARAMS
|
125 |
+
------
|
126 |
+
batch: [text_normalized, spec_normalized, wav_normalized, sid]
|
127 |
+
"""
|
128 |
+
# Right zero-pad all one-hot text sequences to max input length
|
129 |
+
_, ids_sorted_decreasing = torch.sort(
|
130 |
+
torch.LongTensor([x[1].size(1) for x in batch]),
|
131 |
+
dim=0, descending=True)
|
132 |
+
|
133 |
+
max_text_len = max([len(x[0]) for x in batch])
|
134 |
+
max_spec_len = max([x[1].size(1) for x in batch])
|
135 |
+
max_wav_len = max([x[2].size(1) for x in batch])
|
136 |
+
|
137 |
+
text_lengths = torch.LongTensor(len(batch))
|
138 |
+
spec_lengths = torch.LongTensor(len(batch))
|
139 |
+
wav_lengths = torch.LongTensor(len(batch))
|
140 |
+
sid = torch.LongTensor(len(batch))
|
141 |
+
|
142 |
+
text_padded = torch.LongTensor(len(batch), max_text_len)
|
143 |
+
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
|
144 |
+
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
145 |
+
text_padded.zero_()
|
146 |
+
spec_padded.zero_()
|
147 |
+
wav_padded.zero_()
|
148 |
+
for i in range(len(ids_sorted_decreasing)):
|
149 |
+
row = batch[ids_sorted_decreasing[i]]
|
150 |
+
|
151 |
+
text = row[0]
|
152 |
+
text_padded[i, :text.size(0)] = text
|
153 |
+
text_lengths[i] = text.size(0)
|
154 |
+
|
155 |
+
spec = row[1]
|
156 |
+
spec_padded[i, :, :spec.size(1)] = spec
|
157 |
+
spec_lengths[i] = spec.size(1)
|
158 |
+
|
159 |
+
wav = row[2]
|
160 |
+
wav_padded[i, :, :wav.size(1)] = wav
|
161 |
+
wav_lengths[i] = wav.size(1)
|
162 |
+
|
163 |
+
sid[i] = row[3]
|
164 |
+
|
165 |
+
if self.return_ids:
|
166 |
+
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid, ids_sorted_decreasing
|
167 |
+
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid
|
168 |
+
|
169 |
+
|
170 |
+
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
171 |
+
"""
|
172 |
+
Maintain similar input lengths in a batch.
|
173 |
+
Length groups are specified by boundaries.
|
174 |
+
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
|
175 |
+
|
176 |
+
It removes samples which are not included in the boundaries.
|
177 |
+
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
|
178 |
+
"""
|
179 |
+
|
180 |
+
def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
|
181 |
+
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
|
182 |
+
self.lengths = dataset.lengths
|
183 |
+
self.batch_size = batch_size
|
184 |
+
self.boundaries = boundaries
|
185 |
+
|
186 |
+
self.buckets, self.num_samples_per_bucket = self._create_buckets()
|
187 |
+
self.total_size = sum(self.num_samples_per_bucket)
|
188 |
+
self.num_samples = self.total_size // self.num_replicas
|
189 |
+
|
190 |
+
def _create_buckets(self):
|
191 |
+
buckets = [[] for _ in range(len(self.boundaries) - 1)]
|
192 |
+
for i in range(len(self.lengths)):
|
193 |
+
length = self.lengths[i]
|
194 |
+
idx_bucket = self._bisect(length)
|
195 |
+
if idx_bucket != -1:
|
196 |
+
buckets[idx_bucket].append(i)
|
197 |
+
|
198 |
+
try:
|
199 |
+
for i in range(len(buckets) - 1, 0, -1):
|
200 |
+
if len(buckets[i]) == 0:
|
201 |
+
buckets.pop(i)
|
202 |
+
self.boundaries.pop(i + 1)
|
203 |
+
assert all(len(bucket) > 0 for bucket in buckets)
|
204 |
+
# When one bucket is not traversed
|
205 |
+
except Exception as e:
|
206 |
+
print('Bucket warning ', e)
|
207 |
+
for i in range(len(buckets) - 1, -1, -1):
|
208 |
+
if len(buckets[i]) == 0:
|
209 |
+
buckets.pop(i)
|
210 |
+
self.boundaries.pop(i + 1)
|
211 |
+
|
212 |
+
num_samples_per_bucket = []
|
213 |
+
for i in range(len(buckets)):
|
214 |
+
len_bucket = len(buckets[i])
|
215 |
+
total_batch_size = self.num_replicas * self.batch_size
|
216 |
+
rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
|
217 |
+
num_samples_per_bucket.append(len_bucket + rem)
|
218 |
+
return buckets, num_samples_per_bucket
|
219 |
+
|
220 |
+
def __iter__(self):
|
221 |
+
# deterministically shuffle based on epoch
|
222 |
+
g = torch.Generator()
|
223 |
+
g.manual_seed(self.epoch)
|
224 |
+
|
225 |
+
indices = []
|
226 |
+
if self.shuffle:
|
227 |
+
for bucket in self.buckets:
|
228 |
+
indices.append(torch.randperm(len(bucket), generator=g).tolist())
|
229 |
+
else:
|
230 |
+
for bucket in self.buckets:
|
231 |
+
indices.append(list(range(len(bucket))))
|
232 |
+
|
233 |
+
batches = []
|
234 |
+
for i in range(len(self.buckets)):
|
235 |
+
bucket = self.buckets[i]
|
236 |
+
len_bucket = len(bucket)
|
237 |
+
ids_bucket = indices[i]
|
238 |
+
num_samples_bucket = self.num_samples_per_bucket[i]
|
239 |
+
|
240 |
+
# add extra samples to make it evenly divisible
|
241 |
+
rem = num_samples_bucket - len_bucket
|
242 |
+
ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
|
243 |
+
|
244 |
+
# subsample
|
245 |
+
ids_bucket = ids_bucket[self.rank::self.num_replicas]
|
246 |
+
|
247 |
+
# batching
|
248 |
+
for j in range(len(ids_bucket) // self.batch_size):
|
249 |
+
batch = [bucket[idx] for idx in ids_bucket[j * self.batch_size:(j + 1) * self.batch_size]]
|
250 |
+
batches.append(batch)
|
251 |
+
|
252 |
+
if self.shuffle:
|
253 |
+
batch_ids = torch.randperm(len(batches), generator=g).tolist()
|
254 |
+
batches = [batches[i] for i in batch_ids]
|
255 |
+
self.batches = batches
|
256 |
+
|
257 |
+
assert len(self.batches) * self.batch_size == self.num_samples
|
258 |
+
return iter(self.batches)
|
259 |
+
|
260 |
+
def _bisect(self, x, lo=0, hi=None):
|
261 |
+
if hi is None:
|
262 |
+
hi = len(self.boundaries) - 1
|
263 |
+
|
264 |
+
if hi > lo:
|
265 |
+
mid = (hi + lo) // 2
|
266 |
+
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
|
267 |
+
return mid
|
268 |
+
elif x <= self.boundaries[mid]:
|
269 |
+
return self._bisect(x, lo, mid)
|
270 |
+
else:
|
271 |
+
return self._bisect(x, mid + 1, hi)
|
272 |
+
else:
|
273 |
+
return -1
|
274 |
+
|
275 |
+
def __len__(self):
|
276 |
+
return self.num_samples // self.batch_size
|
dict/COPYING
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Copyright (c) 2009, Nara Institute of Science and Technology, Japan.
|
2 |
+
|
3 |
+
All rights reserved.
|
4 |
+
|
5 |
+
Redistribution and use in source and binary forms, with or without
|
6 |
+
modification, are permitted provided that the following conditions are
|
7 |
+
met:
|
8 |
+
|
9 |
+
Redistributions of source code must retain the above copyright notice,
|
10 |
+
this list of conditions and the following disclaimer.
|
11 |
+
Redistributions in binary form must reproduce the above copyright
|
12 |
+
notice, this list of conditions and the following disclaimer in the
|
13 |
+
documentation and/or other materials provided with the distribution.
|
14 |
+
Neither the name of the Nara Institute of Science and Technology
|
15 |
+
(NAIST) nor the names of its contributors may be used to endorse or
|
16 |
+
promote products derived from this software without specific prior
|
17 |
+
written permission.
|
18 |
+
|
19 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
20 |
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
21 |
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
22 |
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
23 |
+
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
24 |
+
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
25 |
+
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
26 |
+
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
27 |
+
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
28 |
+
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
29 |
+
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
30 |
+
|
31 |
+
Copyright (c) 2011-2017, The UniDic Consortium
|
32 |
+
All rights reserved.
|
33 |
+
|
34 |
+
Redistribution and use in source and binary forms, with or without
|
35 |
+
modification, are permitted provided that the following conditions are
|
36 |
+
met:
|
37 |
+
|
38 |
+
* Redistributions of source code must retain the above copyright
|
39 |
+
notice, this list of conditions and the following disclaimer.
|
40 |
+
|
41 |
+
* Redistributions in binary form must reproduce the above copyright
|
42 |
+
notice, this list of conditions and the following disclaimer in the
|
43 |
+
documentation and/or other materials provided with the
|
44 |
+
distribution.
|
45 |
+
|
46 |
+
* Neither the name of the UniDic Consortium nor the names of its
|
47 |
+
contributors may be used to endorse or promote products derived
|
48 |
+
from this software without specific prior written permission.
|
49 |
+
|
50 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
51 |
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
52 |
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
53 |
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
54 |
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
55 |
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
56 |
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
57 |
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
58 |
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
59 |
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
60 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
61 |
+
|
62 |
+
/* ----------------------------------------------------------------- */
|
63 |
+
/* The Japanese TTS System "Open JTalk" */
|
64 |
+
/* developed by HTS Working Group */
|
65 |
+
/* http://open-jtalk.sourceforge.net/ */
|
66 |
+
/* ----------------------------------------------------------------- */
|
67 |
+
/* */
|
68 |
+
/* Copyright (c) 2008-2016 Nagoya Institute of Technology */
|
69 |
+
/* Department of Computer Science */
|
70 |
+
/* */
|
71 |
+
/* All rights reserved. */
|
72 |
+
/* */
|
73 |
+
/* Redistribution and use in source and binary forms, with or */
|
74 |
+
/* without modification, are permitted provided that the following */
|
75 |
+
/* conditions are met: */
|
76 |
+
/* */
|
77 |
+
/* - Redistributions of source code must retain the above copyright */
|
78 |
+
/* notice, this list of conditions and the following disclaimer. */
|
79 |
+
/* - Redistributions in binary form must reproduce the above */
|
80 |
+
/* copyright notice, this list of conditions and the following */
|
81 |
+
/* disclaimer in the documentation and/or other materials provided */
|
82 |
+
/* with the distribution. */
|
83 |
+
/* - Neither the name of the HTS working group nor the names of its */
|
84 |
+
/* contributors may be used to endorse or promote products derived */
|
85 |
+
/* from this software without specific prior written permission. */
|
86 |
+
/* */
|
87 |
+
/* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND */
|
88 |
+
/* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, */
|
89 |
+
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
|
90 |
+
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
|
91 |
+
/* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS */
|
92 |
+
/* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, */
|
93 |
+
/* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED */
|
94 |
+
/* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, */
|
95 |
+
/* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON */
|
96 |
+
/* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, */
|
97 |
+
/* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY */
|
98 |
+
/* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
|
99 |
+
/* POSSIBILITY OF SUCH DAMAGE. */
|
100 |
+
/* ----------------------------------------------------------------- */
|
dict/char.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:888ee94c5a8a7a26d24ab3f1b7155441351954fd51ea06b4a2f78bd742492b2f
|
3 |
+
size 262496
|
dict/left-id.def
ADDED
@@ -0,0 +1,1377 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
0 BOS/EOS,*,*,*,*,*,BOS/EOS
|
2 |
+
1 その他,間投,*,*,*,*,*
|
3 |
+
2 フィラー,*,*,*,*,*,*
|
4 |
+
3 感動詞,*,*,*,*,*,*
|
5 |
+
4 記号,アルファベット,*,*,*,*,*
|
6 |
+
5 記号,一般,*,*,*,*,*
|
7 |
+
6 記号,括弧開,*,*,*,*,BOS/EOS
|
8 |
+
7 記号,括弧閉,*,*,*,*,BOS/EOS
|
9 |
+
8 記号,句点,*,*,*,*,BOS/EOS
|
10 |
+
9 記号,空白,*,*,*,*,*
|
11 |
+
10 記号,読点,*,*,*,*,*
|
12 |
+
11 形容詞,自立,*,*,形容詞・アウオ段,*,*
|
13 |
+
12 形容詞,自立,*,*,形容詞・アウオ段,ガル接続,*
|
14 |
+
13 形容詞,自立,*,*,形容詞・アウオ段,ガル接続,無い
|
15 |
+
14 形容詞,自立,*,*,形容詞・アウオ段,仮定形,*
|
16 |
+
15 形容詞,自立,*,*,形容詞・アウオ段,仮定形,無い
|
17 |
+
16 形容詞,自立,*,*,形容詞・アウオ段,仮定縮約1,*
|
18 |
+
17 形容詞,自立,*,*,形容詞・アウオ段,仮定縮約1,無い
|
19 |
+
18 形容詞,自立,*,*,形容詞・アウオ段,仮定縮約2,*
|
20 |
+
19 形容詞,自立,*,*,形容詞・アウオ段,仮定縮約2,無い
|
21 |
+
20 形容詞,自立,*,*,形容詞・アウオ段,基本形,*
|
22 |
+
21 形容詞,自立,*,*,形容詞・アウオ段,基本形,無い
|
23 |
+
22 形容詞,自立,*,*,形容詞・アウオ段,体言接続,*
|
24 |
+
23 形容詞,自立,*,*,形容詞・アウオ段,体言接続,無い
|
25 |
+
24 形容詞,自立,*,*,形容詞・アウオ段,文語基本形,*
|
26 |
+
25 形容詞,自立,*,*,形容詞・アウオ段,文語基本形,無い
|
27 |
+
26 形容詞,自立,*,*,形容詞・アウオ段,未然ウ接続,*
|
28 |
+
27 形容詞,自立,*,*,形容詞・アウオ段,未然ウ接続,無い
|
29 |
+
28 形容詞,自立,*,*,形容詞・アウオ段,未然ヌ接続,*
|
30 |
+
29 形容詞,自立,*,*,形容詞・アウオ段,未然ヌ接続,無い
|
31 |
+
30 形容詞,自立,*,*,形容詞・アウオ段,命令e,*
|
32 |
+
31 形容詞,自立,*,*,形容詞・アウオ段,命令e,無い
|
33 |
+
32 形容詞,自立,*,*,形容詞・アウオ段,連用ゴザイ接続,*
|
34 |
+
33 形容詞,自立,*,*,形容詞・アウオ段,連用ゴザイ接続,無い
|
35 |
+
34 形容詞,自立,*,*,形容詞・アウオ段,連用タ接続,*
|
36 |
+
35 形容詞,自立,*,*,形容詞・アウオ段,連用タ接続,無い
|
37 |
+
36 形容詞,自立,*,*,形容詞・アウオ段,連用テ接続,*
|
38 |
+
37 形容詞,自立,*,*,形容詞・アウオ段,連用テ接続,無い
|
39 |
+
38 形容詞,自立,*,*,形容詞・イ段,ガル接続,*
|
40 |
+
39 形容詞,自立,*,*,形容詞・イ段,仮定形,*
|
41 |
+
40 形容詞,自立,*,*,形容詞・イ段,仮定縮約1,*
|
42 |
+
41 形容詞,自立,*,*,形容詞・イ段,仮定縮約2,*
|
43 |
+
42 形容詞,自立,*,*,形容詞・イ段,基本形,*
|
44 |
+
43 形容詞,自立,*,*,形容詞・イ段,体言接続,*
|
45 |
+
44 形容詞,自立,*,*,形容詞・イ段,文語基本形,*
|
46 |
+
45 形容詞,自立,*,*,形容詞・イ段,未然ウ接続,*
|
47 |
+
46 形容詞,自立,*,*,形容詞・イ段,未然ヌ接続,*
|
48 |
+
47 形容詞,自立,*,*,形容詞・イ段,命令e,*
|
49 |
+
48 形容詞,自立,*,*,形容詞・イ段,連用ゴザイ接続,*
|
50 |
+
49 形容詞,自立,*,*,形容詞・イ段,連用タ接続,*
|
51 |
+
50 形容詞,自立,*,*,形容詞・イ段,連用テ接続,*
|
52 |
+
51 形容詞,自立,*,*,不変化型,基本形,*
|
53 |
+
52 形容詞,接尾,*,*,形容詞・アウオ段,ガル接続,*
|
54 |
+
53 形容詞,接尾,*,*,形容詞・アウオ段,ガル接続,たらしい
|
55 |
+
54 形容詞,接尾,*,*,形容詞・アウオ段,ガル接続,臭い
|
56 |
+
55 形容詞,接尾,*,*,形容詞・アウオ段,仮定形,*
|
57 |
+
56 形容詞,接尾,*,*,形容詞・アウオ段,仮定形,たらしい
|
58 |
+
57 形容詞,接尾,*,*,形容詞・アウオ段,仮定形,臭い
|
59 |
+
58 形容詞,接尾,*,*,形容詞・アウオ段,仮定縮約1,*
|
60 |
+
59 形容詞,接尾,*,*,形容詞・アウオ段,仮定縮約1,たらしい
|
61 |
+
60 形容詞,接尾,*,*,形容詞・アウオ段,仮定縮約1,臭い
|
62 |
+
61 形容詞,接尾,*,*,形容詞・アウオ段,仮定縮約2,*
|
63 |
+
62 形容詞,接尾,*,*,形容詞・アウオ段,仮定縮約2,たらしい
|
64 |
+
63 形容詞,接尾,*,*,形容詞・アウオ段,仮定縮約2,臭い
|
65 |
+
64 形容詞,接尾,*,*,形容詞・アウオ段,基本形,*
|
66 |
+
65 形容詞,接尾,*,*,形容詞・アウオ段,基本形,たらしい
|
67 |
+
66 形容詞,接尾,*,*,形容詞・アウオ段,基本形,臭い
|
68 |
+
67 形容詞,接尾,*,*,形容詞・アウオ段,体言接続,*
|
69 |
+
68 形容詞,接尾,*,*,形容詞・アウオ段,体言接続,たらしい
|
70 |
+
69 形容詞,接尾,*,*,形容詞・アウオ段,体言接続,臭い
|
71 |
+
70 形容詞,接尾,*,*,形容詞・アウオ段,文語基本形,*
|
72 |
+
71 形容詞,接尾,*,*,形容詞・アウオ段,文語基本形,たらしい
|
73 |
+
72 形容詞,接尾,*,*,形容詞・アウオ段,文語基本形,臭い
|
74 |
+
73 形容詞,接尾,*,*,形容詞・アウオ段,未然ウ接続,*
|
75 |
+
74 形容詞,接尾,*,*,形容詞・アウオ段,未然ウ接続,たらしい
|
76 |
+
75 形容詞,接尾,*,*,形容詞・アウオ段,未然ウ接続,臭い
|
77 |
+
76 形容詞,接尾,*,*,形容詞・アウオ段,未然ヌ接続,*
|
78 |
+
77 形容詞,接尾,*,*,形容詞・アウオ段,未然ヌ接続,たらしい
|
79 |
+
78 形容詞,接尾,*,*,形容詞・アウオ段,未然ヌ接続,臭い
|
80 |
+
79 形容詞,接尾,*,*,形容詞・アウオ段,命令e,*
|
81 |
+
80 形容詞,接尾,*,*,形容詞・アウオ段,命令e,たらしい
|
82 |
+
81 形容詞,接尾,*,*,形容詞・アウオ段,命令e,臭い
|
83 |
+
82 形容詞,接尾,*,*,形容詞・アウオ段,連用ゴザイ接続,*
|
84 |
+
83 形容詞,接尾,*,*,形容詞・アウオ段,連用ゴザイ接続,たらしい
|
85 |
+
84 形容詞,接尾,*,*,形容詞・アウオ段,連用ゴザイ接続,臭い
|
86 |
+
85 形容詞,接尾,*,*,形容詞・アウオ段,連用タ接続,*
|
87 |
+
86 形容詞,接尾,*,*,形容詞・アウオ段,連用タ接続,たらしい
|
88 |
+
87 形容詞,接尾,*,*,形容詞・アウオ段,連用タ接続,臭い
|
89 |
+
88 形容詞,接尾,*,*,形容詞・アウオ段,連用テ接続,*
|
90 |
+
89 形容詞,接尾,*,*,形容詞・アウオ段,連用テ接続,たらしい
|
91 |
+
90 形容詞,接尾,*,*,形容詞・アウオ段,連用テ接続,臭い
|
92 |
+
91 形容詞,接尾,*,*,形容詞・イ段,ガル接続,*
|
93 |
+
92 形容詞,接尾,*,*,形容詞・イ段,ガル接続,たらしい
|
94 |
+
93 形容詞,接尾,*,*,形容詞・イ段,仮定形,*
|
95 |
+
94 形容詞,接尾,*,*,形容詞・イ段,仮定形,たらしい
|
96 |
+
95 形容詞,接尾,*,*,形容詞・イ段,仮定縮約1,*
|
97 |
+
96 形容詞,接尾,*,*,形容詞・イ段,仮定縮約1,たらしい
|
98 |
+
97 形容詞,接尾,*,*,形容詞・イ段,仮定縮約2,*
|
99 |
+
98 形容詞,接尾,*,*,形容詞・イ段,仮定縮約2,たらしい
|
100 |
+
99 形容詞,接尾,*,*,形容詞・イ段,基本形,*
|
101 |
+
100 形容詞,接尾,*,*,形容詞・イ段,基本形,たらしい
|
102 |
+
101 形容詞,接尾,*,*,形容詞・イ段,体言接続,*
|
103 |
+
102 形容詞,接尾,*,*,形容詞・イ段,体言接続,たらしい
|
104 |
+
103 形容詞,接尾,*,*,形容詞・イ段,文語基本形,*
|
105 |
+
104 形容詞,接尾,*,*,形容詞・イ段,文語基本形,たらしい
|
106 |
+
105 形容詞,接尾,*,*,形容詞・イ段,未然ウ接続,*
|
107 |
+
106 形容詞,接尾,*,*,形容詞・イ段,未然ウ接続,たらしい
|
108 |
+
107 形容詞,接尾,*,*,形容詞・イ段,未然ヌ接続,*
|
109 |
+
108 形容詞,接尾,*,*,形容詞・イ段,未然ヌ接続,たらしい
|
110 |
+
109 形容詞,接尾,*,*,形容詞・イ段,命令e,*
|
111 |
+
110 形容詞,接尾,*,*,形容詞・イ段,命令e,たらしい
|
112 |
+
111 形容詞,接尾,*,*,形容詞・イ段,連用ゴザイ接続,*
|
113 |
+
112 形容詞,接尾,*,*,形容詞・イ段,連用ゴザイ接続,たらしい
|
114 |
+
113 形容詞,接尾,*,*,形容詞・イ段,連用タ接続,*
|
115 |
+
114 形容詞,接尾,*,*,形容詞・イ段,連用タ接続,たらしい
|
116 |
+
115 形容詞,接尾,*,*,形容詞・イ段,連用テ接続,*
|
117 |
+
116 形容詞,接尾,*,*,形容詞・イ段,連用テ接続,たらしい
|
118 |
+
117 形容詞,非自立,*,*,形容詞・アウオ段,*,*
|
119 |
+
118 形容詞,非自立,*,*,形容詞・アウオ段,ガル接続,*
|
120 |
+
119 形容詞,非自立,*,*,形容詞・アウオ段,ガル接続,難い
|
121 |
+
120 形容詞,非自立,*,*,形容詞・アウオ段,ガル接続,良い
|
122 |
+
121 形容詞,非自立,*,*,形容詞・アウオ段,仮定形,*
|
123 |
+
122 形容詞,非自立,*,*,形容詞・アウオ段,仮定形,難い
|
124 |
+
123 形容詞,非自立,*,*,形容詞・アウオ段,仮定形,良い
|
125 |
+
124 形容詞,非自立,*,*,形容詞・アウオ段,仮定縮約1,*
|
126 |
+
125 形容詞,非自立,*,*,形容詞・アウオ段,仮定縮約1,難い
|
127 |
+
126 形容詞,非自立,*,*,形容詞・アウオ段,仮定縮約1,良い
|
128 |
+
127 形容詞,非自立,*,*,形容詞・アウオ段,仮定縮約2,*
|
129 |
+
128 形容詞,非自立,*,*,形容詞・アウオ段,仮定縮約2,難い
|
130 |
+
129 形容詞,非自立,*,*,形容詞・アウオ段,仮定縮約2,良い
|
131 |
+
130 形容詞,非自立,*,*,形容詞・アウオ段,基本形,難い
|
132 |
+
131 形容詞,非自立,*,*,形容詞・アウオ段,基本形,良い
|
133 |
+
132 形容詞,非自立,*,*,形容詞・アウオ段,体言接続,*
|
134 |
+
133 形容詞,非自立,*,*,形容詞・アウオ段,体言接続,難い
|
135 |
+
134 形容詞,非自立,*,*,形容詞・アウオ段,体言接続,良い
|
136 |
+
135 形容詞,非自立,*,*,形容詞・アウオ段,文語基本形,*
|
137 |
+
136 形容詞,非自立,*,*,形容詞・アウオ段,文語基本形,難い
|
138 |
+
137 形容詞,非自立,*,*,形容詞・アウオ段,文語基本形,良い
|
139 |
+
138 形容詞,非自立,*,*,形容詞・アウオ段,未然ウ接続,*
|
140 |
+
139 形容詞,非自立,*,*,形容詞・アウオ段,未然ウ接続,難い
|
141 |
+
140 形容詞,非自立,*,*,形容詞・アウオ段,未然ウ接続,良い
|
142 |
+
141 形容詞,非自立,*,*,形容詞・アウオ段,未然ヌ接続,*
|
143 |
+
142 形容詞,非自立,*,*,形容詞・アウオ段,未然ヌ接続,難い
|
144 |
+
143 形容詞,非自立,*,*,形容詞・アウオ段,未然ヌ接続,良い
|
145 |
+
144 形容詞,非自立,*,*,形容詞・アウオ段,命令e,*
|
146 |
+
145 形容詞,非自立,*,*,形容詞・アウオ段,命令e,難い
|
147 |
+
146 形容詞,非自立,*,*,形容詞・アウオ段,命令e,良い
|
148 |
+
147 形容詞,非自立,*,*,形容詞・アウオ段,連用ゴザイ接続,*
|
149 |
+
148 形容詞,非自立,*,*,形容詞・アウオ段,連用ゴザイ接続,難い
|
150 |
+
149 形容詞,非自立,*,*,形容詞・アウオ段,連用ゴザイ接続,良い
|
151 |
+
150 形容詞,非自立,*,*,形容詞・アウオ段,連用タ接続,*
|
152 |
+
151 形容詞,非自立,*,*,形容詞・アウオ段,連用タ接続,難い
|
153 |
+
152 形容詞,非自立,*,*,形容詞・アウオ段,連用タ接続,良い
|
154 |
+
153 形容詞,非自立,*,*,形容詞・アウオ段,連用テ接続,*
|
155 |
+
154 形容詞,非自立,*,*,形容詞・アウオ段,連用テ接続,難い
|
156 |
+
155 形容詞,非自立,*,*,形容詞・アウオ段,連用テ接続,良い
|
157 |
+
156 形容詞,非自立,*,*,形容詞・イ段,ガル接続,欲しい
|
158 |
+
157 形容詞,非自立,*,*,形容詞・イ段,仮定形,欲しい
|
159 |
+
158 形容詞,非自立,*,*,形容詞・イ段,仮定縮約1,欲しい
|
160 |
+
159 形容詞,非自立,*,*,形容詞・イ段,仮定縮約2,欲しい
|
161 |
+
160 形容詞,非自立,*,*,形容詞・イ段,基本形,欲しい
|
162 |
+
161 形容詞,非自立,*,*,形容詞・イ段,体言接続,欲しい
|
163 |
+
162 形容詞,非自立,*,*,形容詞・イ段,文語基本形,欲しい
|
164 |
+
163 形容詞,非自立,*,*,形容詞・イ段,未然ウ接続,欲しい
|
165 |
+
164 形容詞,非自立,*,*,形容詞・イ段,未然ヌ接続,欲しい
|
166 |
+
165 形容詞,非自立,*,*,形容詞・イ段,命令e,欲しい
|
167 |
+
166 形容詞,非自立,*,*,形容詞・イ段,連用ゴザイ接続,欲しい
|
168 |
+
167 形容詞,非自立,*,*,形容詞・イ段,連用タ接続,欲しい
|
169 |
+
168 形容詞,非自立,*,*,形容詞・イ段,連用テ接続,欲しい
|
170 |
+
169 助詞,格助詞,一般,*,*,*,から
|
171 |
+
170 助詞,格助詞,一般,*,*,*,が
|
172 |
+
171 助詞,格助詞,一般,*,*,*,つ
|
173 |
+
172 助詞,格助詞,一般,*,*,*,で
|
174 |
+
173 助詞,格助詞,一般,*,*,*,と
|
175 |
+
174 助詞,格助詞,一般,*,*,*,に
|
176 |
+
175 助詞,格助詞,一般,*,*,*,にて
|
177 |
+
176 助詞,格助詞,一般,*,*,*,の
|
178 |
+
177 助詞,格助詞,一般,*,*,*,へ
|
179 |
+
178 助詞,格助詞,一般,*,*,*,より
|
180 |
+
179 助詞,格助詞,一般,*,*,*,を
|
181 |
+
180 助詞,格助詞,一般,*,*,*,ん
|
182 |
+
181 助詞,格助詞,一般,*,*,*,デ
|
183 |
+
182 助詞,格助詞,一般,*,*,*,ノ
|
184 |
+
183 助詞,格助詞,一般,*,*,*,ヘ
|
185 |
+
184 助詞,格助詞,一般,*,*,*,ヲ
|
186 |
+
185 助詞,格助詞,一般,*,*,*,之
|
187 |
+
186 助詞,格助詞,引用,*,*,*,っと
|
188 |
+
187 助詞,格助詞,引用,*,*,*,と
|
189 |
+
188 助詞,格助詞,連語,*,*,*,じゃ
|
190 |
+
189 助詞,格助詞,連語,*,*,*,っちゅう
|
191 |
+
190 助詞,格助詞,連語,*,*,*,って
|
192 |
+
191 助詞,格助詞,連語,*,*,*,っていう
|
193 |
+
192 助詞,格助詞,連語,*,*,*,ってな
|
194 |
+
193 助詞,格助詞,連語,*,*,*,て
|
195 |
+
194 助詞,格助詞,連語,*,*,*,ていう
|
196 |
+
195 助詞,格助詞,連語,*,*,*,といいます
|
197 |
+
196 助詞,格助詞,連語,*,*,*,という
|
198 |
+
197 助詞,格助詞,連語,*,*,*,といった
|
199 |
+
198 助詞,格助詞,連語,*,*,*,といふ
|
200 |
+
199 助詞,格助詞,連語,*,*,*,とかいいます
|
201 |
+
200 助詞,格助詞,連語,*,*,*,とかいう
|
202 |
+
201 助詞,格助詞,連語,*,*,*,とかいふ
|
203 |
+
202 助詞,格助詞,連語,*,*,*,として
|
204 |
+
203 助詞,格助詞,連語,*,*,*,としましたら
|
205 |
+
204 助詞,格助詞,連語,*,*,*,としまして
|
206 |
+
205 助詞,格助詞,連語,*,*,*,とともに
|
207 |
+
206 助詞,格助詞,連語,*,*,*,と共に
|
208 |
+
207 助詞,格助詞,連語,*,*,*,にあたって
|
209 |
+
208 助詞,格助詞,連語,*,*,*,にあたり
|
210 |
+
209 助詞,格助詞,連語,*,*,*,にあたりまして
|
211 |
+
210 助詞,格助詞,連語,*,*,*,にあたります
|
212 |
+
211 助詞,格助詞,連語,*,*,*,にあたる
|
213 |
+
212 助詞,格助詞,連語,*,*,*,において
|
214 |
+
213 助詞,格助詞,連語,*,*,*,におきまして
|
215 |
+
214 助詞,格助詞,連語,*,*,*,における
|
216 |
+
215 助詞,格助詞,連語,*,*,*,にかけ
|
217 |
+
216 助詞,格助詞,連語,*,*,*,にかけて
|
218 |
+
217 助詞,格助詞,連語,*,*,*,にかけまして
|
219 |
+
218 助詞,格助詞,連語,*,*,*,にたいして
|
220 |
+
219 助詞,格助詞,連語,*,*,*,にたいしまして
|
221 |
+
220 助詞,格助詞,連語,*,*,*,にたいします
|
222 |
+
221 助詞,格助詞,連語,*,*,*,にたいする
|
223 |
+
222 助詞,格助詞,連語,*,*,*,について
|
224 |
+
223 助詞,格助詞,連語,*,*,*,につき
|
225 |
+
224 助詞,格助詞,連語,*,*,*,につきまして
|
226 |
+
225 助詞,格助詞,連語,*,*,*,につけ
|
227 |
+
226 助詞,格助詞,連語,*,*,*,につれ
|
228 |
+
227 助詞,格助詞,連語,*,*,*,につれて
|
229 |
+
228 助詞,格助詞,連語,*,*,*,にとって
|
230 |
+
229 助詞,格助詞,連語,*,*,*,にとり
|
231 |
+
230 助詞,格助詞,連語,*,*,*,にとりまして
|
232 |
+
231 助詞,格助詞,連語,*,*,*,にまつわります
|
233 |
+
232 助詞,格助詞,連語,*,*,*,にまつわる
|
234 |
+
233 助詞,格助詞,連語,*,*,*,によって
|
235 |
+
234 助詞,格助詞,連語,*,*,*,により
|
236 |
+
235 助詞,格助詞,連語,*,*,*,によりまして
|
237 |
+
236 助詞,格助詞,連語,*,*,*,によります
|
238 |
+
237 助詞,格助詞,連語,*,*,*,による
|
239 |
+
238 助詞,格助詞,連語,*,*,*,にわたって
|
240 |
+
239 助詞,格助詞,連語,*,*,*,にわたり
|
241 |
+
240 助詞,格助詞,連語,*,*,*,にわたりまして
|
242 |
+
241 助詞,格助詞,連語,*,*,*,にわたります
|
243 |
+
242 助詞,格助詞,連語,*,*,*,にわたる
|
244 |
+
243 助詞,格助詞,連語,*,*,*,に関し
|
245 |
+
244 助詞,格助詞,連語,*,*,*,に関して
|
246 |
+
245 助詞,格助詞,連語,*,*,*,に関しまして
|
247 |
+
246 助詞,格助詞,連語,*,*,*,に関します
|
248 |
+
247 助詞,格助詞,連語,*,*,*,に関する
|
249 |
+
248 助詞,格助詞,連語,*,*,*,に際し
|
250 |
+
249 助詞,格助詞,連語,*,*,*,に際して
|
251 |
+
250 助詞,格助詞,連語,*,*,*,に際しまして
|
252 |
+
251 助詞,格助詞,連語,*,*,*,に従い
|
253 |
+
252 助詞,格助詞,連語,*,*,*,に従いまして
|
254 |
+
253 助詞,格助詞,連語,*,*,*,に従います
|
255 |
+
254 助詞,格助詞,連語,*,*,*,に従う
|
256 |
+
255 助詞,格助詞,連語,*,*,*,に従って
|
257 |
+
256 助詞,格助詞,連語,*,*,*,に対し
|
258 |
+
257 助詞,格助詞,連語,*,*,*,に対して
|
259 |
+
258 助詞,格助詞,連語,*,*,*,に対しまして
|
260 |
+
259 助詞,格助詞,連語,*,*,*,に対します
|
261 |
+
260 助詞,格助詞,連語,*,*,*,に対する
|
262 |
+
261 助詞,格助詞,連語,*,*,*,に当たって
|
263 |
+
262 助詞,格助詞,連語,*,*,*,に当たり
|
264 |
+
263 助詞,格助詞,連語,*,*,*,に当たりまして
|
265 |
+
264 助詞,格助詞,連語,*,*,*,に当たります
|
266 |
+
265 助詞,格助詞,連語,*,*,*,に当たる
|
267 |
+
266 助詞,格助詞,連語,*,*,*,をめぐって
|
268 |
+
267 助詞,格助詞,連語,*,*,*,をめぐりまして
|
269 |
+
268 助詞,格助詞,連語,*,*,*,をめぐります
|
270 |
+
269 助詞,格助詞,連語,*,*,*,をめぐる
|
271 |
+
270 助詞,格助詞,連語,*,*,*,をもちまして
|
272 |
+
271 助詞,格助詞,連語,*,*,*,をもって
|
273 |
+
272 助詞,格助詞,連語,*,*,*,を以て
|
274 |
+
273 助詞,格助詞,連語,*,*,*,を通して
|
275 |
+
274 助詞,格助詞,連語,*,*,*,を通しまして
|
276 |
+
275 助詞,格助詞,連語,*,*,*,を通じ
|
277 |
+
276 助詞,格助詞,連語,*,*,*,を通じて
|
278 |
+
277 助詞,格助詞,連語,*,*,*,を通じまして
|
279 |
+
278 助詞,係助詞,*,*,*,*,こそ
|
280 |
+
279 助詞,係助詞,*,*,*,*,さえ
|
281 |
+
280 助詞,係助詞,*,*,*,*,しか
|
282 |
+
281 助詞,係助詞,*,*,*,*,すら
|
283 |
+
282 助詞,係助詞,*,*,*,*,ぞ
|
284 |
+
283 助詞,係助詞,*,*,*,*,っきゃ
|
285 |
+
284 助詞,係助詞,*,*,*,*,は
|
286 |
+
285 助詞,係助詞,*,*,*,*,も
|
287 |
+
286 助詞,係助詞,*,*,*,*,や
|
288 |
+
287 助詞,終助詞,*,*,*,*,かぁ
|
289 |
+
288 助詞,終助詞,*,*,*,*,かい
|
290 |
+
289 助詞,終助詞,*,*,*,*,かしら
|
291 |
+
290 助詞,終助詞,*,*,*,*,け
|
292 |
+
291 助詞,終助詞,*,*,*,*,さ
|
293 |
+
292 助詞,終助詞,*,*,*,*,ぜ
|
294 |
+
293 助詞,終助詞,*,*,*,*,ぞ
|
295 |
+
294 助詞,終助詞,*,*,*,*,だって
|
296 |
+
295 助詞,終助詞,*,*,*,*,っけ
|
297 |
+
296 助詞,終助詞,*,*,*,*,てん
|
298 |
+
297 助詞,終助詞,*,*,*,*,で
|
299 |
+
298 助詞,終助詞,*,*,*,*,な
|
300 |
+
299 助詞,終助詞,*,*,*,*,なー
|
301 |
+
300 助詞,終助詞,*,*,*,*,なぁー
|
302 |
+
301 助詞,終助詞,*,*,*,*,なァ
|
303 |
+
302 助詞,終助詞,*,*,*,*,ね
|
304 |
+
303 助詞,終助詞,*,*,*,*,ねー
|
305 |
+
304 助詞,終助詞,*,*,*,*,ねん
|
306 |
+
305 助詞,終助詞,*,*,*,*,の
|
307 |
+
306 助詞,終助詞,*,*,*,*,のう
|
308 |
+
307 助詞,終助詞,*,*,*,*,べ
|
309 |
+
308 助詞,終助詞,*,*,*,*,もん
|
310 |
+
309 助詞,終助詞,*,*,*,*,や
|
311 |
+
310 助詞,終助詞,*,*,*,*,やら
|
312 |
+
311 助詞,終助詞,*,*,*,*,よ
|
313 |
+
312 助詞,終助詞,*,*,*,*,よー
|
314 |
+
313 助詞,終助詞,*,*,*,*,よう
|
315 |
+
314 助詞,終助詞,*,*,*,*,わ
|
316 |
+
315 助詞,終助詞,*,*,*,*,わい
|
317 |
+
316 助詞,終助詞,*,*,*,*,ん
|
318 |
+
317 助詞,終助詞,*,*,*,*,ヨー
|
319 |
+
318 助詞,終助詞,*,*,*,*,ワ
|
320 |
+
319 助詞,接続助詞,*,*,*,*,および
|
321 |
+
320 助詞,接続助詞,*,*,*,*,から
|
322 |
+
321 助詞,接続助詞,*,*,*,*,からには
|
323 |
+
322 助詞,接続助詞,*,*,*,*,が
|
324 |
+
323 助詞,接続助詞,*,*,*,*,けども
|
325 |
+
324 助詞,接続助詞,*,*,*,*,けれど
|
326 |
+
325 助詞,接続助詞,*,*,*,*,けれども
|
327 |
+
326 助詞,接続助詞,*,*,*,*,さかい
|
328 |
+
327 助詞,接続助詞,*,*,*,*,し
|
329 |
+
328 助詞,接続助詞,*,*,*,*,たって
|
330 |
+
329 助詞,接続助詞,*,*,*,*,つつ
|
331 |
+
330 助詞,接続助詞,*,*,*,*,て
|
332 |
+
331 助詞,接続助詞,*,*,*,*,で
|
333 |
+
332 助詞,接続助詞,*,*,*,*,と
|
334 |
+
333 助詞,接続助詞,*,*,*,*,とも
|
335 |
+
334 助詞,接続助詞,*,*,*,*,ど
|
336 |
+
335 助詞,接続助詞,*,*,*,*,どころか
|
337 |
+
336 助詞,接続助詞,*,*,*,*,ども
|
338 |
+
337 助詞,接続助詞,*,*,*,*,ながら
|
339 |
+
338 助詞,接続助詞,*,*,*,*,なり
|
340 |
+
339 助詞,接続助詞,*,*,*,*,ので
|
341 |
+
340 助詞,接続助詞,*,*,*,*,のに
|
342 |
+
341 助詞,接続助詞,*,*,*,*,ば
|
343 |
+
342 助詞,接続助詞,*,*,*,*,ものの
|
344 |
+
343 助詞,接続助詞,*,*,*,*,や
|
345 |
+
344 助詞,接続助詞,*,*,*,*,やいなや
|
346 |
+
345 助詞,接続助詞,*,*,*,*,や否や
|
347 |
+
346 助詞,接続助詞,*,*,*,*,んで
|
348 |
+
347 助詞,特殊,*,*,*,*,かな
|
349 |
+
348 助詞,特殊,*,*,*,*,けむ
|
350 |
+
349 助詞,特殊,*,*,*,*,に
|
351 |
+
350 助詞,特殊,*,*,*,*,にゃ
|
352 |
+
351 助詞,特殊,*,*,*,*,ん
|
353 |
+
352 助詞,副詞化,*,*,*,*,と
|
354 |
+
353 助詞,副詞化,*,*,*,*,に
|
355 |
+
354 助詞,副助詞,*,*,*,*,かも
|
356 |
+
355 助詞,副助詞,*,*,*,*,くらい
|
357 |
+
356 助詞,副助詞,*,*,*,*,ぐらい
|
358 |
+
357 助詞,副助詞,*,*,*,*,しも
|
359 |
+
358 助詞,副助詞,*,*,*,*,じゃ
|
360 |
+
359 助詞,副助詞,*,*,*,*,じゃあ
|
361 |
+
360 助詞,副助詞,*,*,*,*,じゃァ
|
362 |
+
361 助詞,副助詞,*,*,*,*,ずつ
|
363 |
+
362 助詞,副助詞,*,*,*,*,だけ
|
364 |
+
363 助詞,副助詞,*,*,*,*,だって
|
365 |
+
364 助詞,副助詞,*,*,*,*,だに
|
366 |
+
365 助詞,副助詞,*,*,*,*,でも
|
367 |
+
366 助詞,副助詞,*,*,*,*,とも
|
368 |
+
367 助詞,副助詞,*,*,*,*,なぞ
|
369 |
+
368 助詞,副助詞,*,*,*,*,など
|
370 |
+
369 助詞,副助詞,*,*,*,*,なり
|
371 |
+
370 助詞,副助詞,*,*,*,*,なんか
|
372 |
+
371 助詞,副助詞,*,*,*,*,なんぞ
|
373 |
+
372 助詞,副助詞,*,*,*,*,なんて
|
374 |
+
373 助詞,副助詞,*,*,*,*,のみ
|
375 |
+
374 助詞,副助詞,*,*,*,*,ばかし
|
376 |
+
375 助詞,副助詞,*,*,*,*,ばかり
|
377 |
+
376 助詞,副助詞,*,*,*,*,ばっか
|
378 |
+
377 助詞,副助詞,*,*,*,*,ばっかり
|
379 |
+
378 助詞,副助詞,*,*,*,*,ほど
|
380 |
+
379 助詞,副助詞,*,*,*,*,まで
|
381 |
+
380 助詞,副助詞,*,*,*,*,やら
|
382 |
+
381 助詞,副助詞,*,*,*,*,程
|
383 |
+
382 助詞,副助詞,*,*,*,*,迄
|
384 |
+
383 助詞,副助詞/並立助詞/終助詞,*,*,*,*,か
|
385 |
+
384 助詞,並立助詞,*,*,*,*,たり
|
386 |
+
385 助詞,並立助詞,*,*,*,*,だの
|
387 |
+
386 助詞,並立助詞,*,*,*,*,だり
|
388 |
+
387 助詞,並立助詞,*,*,*,*,と
|
389 |
+
388 助詞,並立助詞,*,*,*,*,とか
|
390 |
+
389 助詞,並立助詞,*,*,*,*,なり
|
391 |
+
390 助詞,並立助詞,*,*,*,*,や
|
392 |
+
391 助詞,並立助詞,*,*,*,*,やら
|
393 |
+
392 助詞,連体化,*,*,*,*,の
|
394 |
+
393 助詞,連体化,*,*,*,*,ノ
|
395 |
+
394 助動詞,*,*,*,下二・タ行,仮定形,つ
|
396 |
+
395 助動詞,*,*,*,下二・タ行,基本形,つ
|
397 |
+
396 助動詞,*,*,*,下二・タ行,体言接続,つ
|
398 |
+
397 助動詞,*,*,*,下二・タ行,未然形,つ
|
399 |
+
398 助動詞,*,*,*,下二・タ行,命令yo,つ
|
400 |
+
399 助動詞,*,*,*,下二・タ行,連用形,つ
|
401 |
+
400 助動詞,*,*,*,形容詞・イ段,ガル接続,らしい
|
402 |
+
401 助動詞,*,*,*,形容詞・イ段,ガル接続,無い
|
403 |
+
402 助動詞,*,*,*,形容詞・イ段,仮定形,らしい
|
404 |
+
403 助動詞,*,*,*,形容詞・イ段,仮定形,無い
|
405 |
+
404 助動詞,*,*,*,形容詞・イ段,仮定縮約1,らしい
|
406 |
+
405 助動詞,*,*,*,形容詞・イ段,仮定縮約1,無い
|
407 |
+
406 助動詞,*,*,*,形容詞・イ段,仮定縮約2,らしい
|
408 |
+
407 助動詞,*,*,*,形容詞・イ段,仮定縮約2,無い
|
409 |
+
408 助動詞,*,*,*,形容詞・イ段,基本形,らしい
|
410 |
+
409 助動詞,*,*,*,形容詞・イ段,基本形,無い
|
411 |
+
410 助動詞,*,*,*,形容詞・イ段,体言接続,らしい
|
412 |
+
411 助動詞,*,*,*,形容詞・イ段,体言接続,無い
|
413 |
+
412 助動詞,*,*,*,形容詞・イ段,文語基本形,らしい
|
414 |
+
413 助動詞,*,*,*,形容詞・イ段,文語基本形,無い
|
415 |
+
414 助動詞,*,*,*,形容詞・イ段,未然ウ接続,らしい
|
416 |
+
415 助動詞,*,*,*,形容詞・イ段,未然ウ接続,無い
|
417 |
+
416 助動詞,*,*,*,形容詞・イ段,未然ヌ接続,らしい
|
418 |
+
417 助動詞,*,*,*,形容詞・イ段,未然ヌ接続,無い
|
419 |
+
418 助動詞,*,*,*,形容詞・イ段,命令e,らしい
|
420 |
+
419 助動詞,*,*,*,形容詞・イ段,命令e,無い
|
421 |
+
420 助動詞,*,*,*,形容詞・イ段,連用ゴザイ接続,らしい
|
422 |
+
421 助動詞,*,*,*,形容詞・イ段,連用ゴザイ接続,無い
|
423 |
+
422 助動詞,*,*,*,形容詞・イ段,連用タ接続,らしい
|
424 |
+
423 助動詞,*,*,*,形容詞・イ段,連用タ接続,無い
|
425 |
+
424 助動詞,*,*,*,形容詞・イ段,連用テ接続,らしい
|
426 |
+
425 助動詞,*,*,*,形容詞・イ段,連用テ接続,無い
|
427 |
+
426 助動詞,*,*,*,五段・ラ行アル,仮定形,ある
|
428 |
+
427 助動詞,*,*,*,五段・ラ行アル,仮定縮約1,ある
|
429 |
+
428 助動詞,*,*,*,五段・ラ行アル,基本形,ある
|
430 |
+
429 助動詞,*,*,*,五段・ラ行アル,体言接続特殊,ある
|
431 |
+
430 助動詞,*,*,*,五段・ラ行アル,未然ウ接続,ある
|
432 |
+
431 助動詞,*,*,*,五段・ラ行アル,未然形,ある
|
433 |
+
432 助動詞,*,*,*,五段・ラ行アル,命令e,ある
|
434 |
+
433 助動詞,*,*,*,五段・ラ行アル,連用タ接続,ある
|
435 |
+
434 助動詞,*,*,*,五段・ラ行アル,連用形,ある
|
436 |
+
435 助動詞,*,*,*,五段・ラ行特殊,仮定形,ござる
|
437 |
+
436 助動詞,*,*,*,五段・ラ行特殊,仮定形,御座る
|
438 |
+
437 助動詞,*,*,*,五段・ラ行特殊,仮定縮約1,ござる
|
439 |
+
438 助動詞,*,*,*,五段・ラ行特殊,仮定縮約1,御座る
|
440 |
+
439 助動詞,*,*,*,五段・ラ行特殊,基本形,ござる
|
441 |
+
440 助動詞,*,*,*,五段・ラ行特殊,基本形,御座る
|
442 |
+
441 助動詞,*,*,*,五段・ラ行特殊,未然ウ接続,ござる
|
443 |
+
442 助動詞,*,*,*,五段・ラ行特殊,未然ウ接続,御座る
|
444 |
+
443 助動詞,*,*,*,五段・ラ行特殊,未然形,ござる
|
445 |
+
444 助動詞,*,*,*,五段・ラ行特殊,未然形,御座る
|
446 |
+
445 助動詞,*,*,*,五段・ラ行特殊,未然特殊,ござる
|
447 |
+
446 助動詞,*,*,*,五段・ラ行特殊,未然特殊,御座る
|
448 |
+
447 助動詞,*,*,*,五段・ラ行特殊,命令e,ござる
|
449 |
+
448 助動詞,*,*,*,五段・ラ行特殊,命令e,御座る
|
450 |
+
449 助動詞,*,*,*,五段・ラ行特殊,命令i,ござる
|
451 |
+
450 助動詞,*,*,*,五段・ラ行特殊,命令i,御座る
|
452 |
+
451 助動詞,*,*,*,五段・ラ行特殊,連用タ接続,ござる
|
453 |
+
452 助動詞,*,*,*,五段・ラ行特殊,連用タ接続,御座る
|
454 |
+
453 助動詞,*,*,*,五段・ラ行特殊,連用形,ござる
|
455 |
+
454 助動詞,*,*,*,五段・ラ行特殊,連用形,御座る
|
456 |
+
455 助動詞,*,*,*,特殊・ジャ,基本形,じゃ
|
457 |
+
456 助動詞,*,*,*,特殊・ジャ,未然形,じゃ
|
458 |
+
457 助動詞,*,*,*,特殊・ジャ,連用形,じゃ
|
459 |
+
458 助動詞,*,*,*,特殊・タ,仮定形,た
|
460 |
+
459 助動詞,*,*,*,特殊・タ,仮定形,だ
|
461 |
+
460 助動詞,*,*,*,特殊・タ,基本形,た
|
462 |
+
461 助動詞,*,*,*,特殊・タ,基本形,だ
|
463 |
+
462 助動詞,*,*,*,特殊・タ,未然形,た
|
464 |
+
463 助動詞,*,*,*,特殊・タ,未然形,だ
|
465 |
+
464 助動詞,*,*,*,特殊・タイ,ガル接続,たい
|
466 |
+
465 助動詞,*,*,*,特殊・タイ,音便基本形,たい
|
467 |
+
466 助動詞,*,*,*,特殊・タイ,仮定形,たい
|
468 |
+
467 助動詞,*,*,*,特殊・タイ,仮定縮約1,たい
|
469 |
+
468 助動詞,*,*,*,特殊・タイ,仮定縮約2,たい
|
470 |
+
469 助動詞,*,*,*,特殊・タイ,基本形,たい
|
471 |
+
470 助動詞,*,*,*,特殊・タイ,体言接続,たい
|
472 |
+
471 助動詞,*,*,*,特殊・タイ,文語基本形,たい
|
473 |
+
472 助動詞,*,*,*,特殊・タイ,未然ウ接続,たい
|
474 |
+
473 助動詞,*,*,*,特殊・タイ,未然ヌ接続,たい
|
475 |
+
474 助動詞,*,*,*,特殊・タイ,連用ゴザイ接続,たい
|
476 |
+
475 助動詞,*,*,*,特殊・タイ,連用タ接続,たい
|
477 |
+
476 助動詞,*,*,*,特殊・タイ,連用テ接続,たい
|
478 |
+
477 助動詞,*,*,*,特殊・ダ,仮定形,だ
|
479 |
+
478 助動詞,*,*,*,特殊・ダ,基本形,だ
|
480 |
+
479 助動詞,*,*,*,特殊・ダ,体言接続,だ
|
481 |
+
480 助動詞,*,*,*,特殊・ダ,未然形,だ
|
482 |
+
481 助動詞,*,*,*,特殊・ダ,命令e,だ
|
483 |
+
482 助動詞,*,*,*,特殊・ダ,連用タ接続,だ
|
484 |
+
483 助動詞,*,*,*,特殊・ダ,連用形,だ
|
485 |
+
484 助動詞,*,*,*,特殊・デス,基本形,っす
|
486 |
+
485 助動詞,*,*,*,特殊・デス,基本形,です
|
487 |
+
486 助動詞,*,*,*,特殊・デス,基本形,どす
|
488 |
+
487 助動詞,*,*,*,特殊・デス,未然形,っす
|
489 |
+
488 助動詞,*,*,*,特殊・デス,未然形,です
|
490 |
+
489 助動詞,*,*,*,特殊・デス,未然形,どす
|
491 |
+
490 助動詞,*,*,*,特殊・デス,連用形,っす
|
492 |
+
491 助動詞,*,*,*,特殊・デス,連用形,です
|
493 |
+
492 助動詞,*,*,*,特殊・デス,連用形,どす
|
494 |
+
493 助動詞,*,*,*,特殊・ナイ,ガル接続,無い
|
495 |
+
494 助動詞,*,*,*,特殊・ナイ,音便基本形,無い
|
496 |
+
495 助動詞,*,*,*,特殊・ナイ,仮定形,無い
|
497 |
+
496 助動詞,*,*,*,特殊・ナイ,仮定縮約1,無い
|
498 |
+
497 助動詞,*,*,*,特殊・ナイ,仮定縮約2,無い
|
499 |
+
498 助動詞,*,*,*,特殊・ナイ,基本形,無い
|
500 |
+
499 助動詞,*,*,*,特殊・ナイ,体言接続,無い
|
501 |
+
500 助動詞,*,*,*,特殊・ナイ,文語基本形,無い
|
502 |
+
501 助動詞,*,*,*,特殊・ナイ,未然ウ接続,無い
|
503 |
+
502 助動詞,*,*,*,特殊・ナイ,未然ヌ接続,無い
|
504 |
+
503 助動詞,*,*,*,特殊・ナイ,命令e,無い
|
505 |
+
504 助動詞,*,*,*,特殊・ナイ,連用ゴザイ接続,無い
|
506 |
+
505 助動詞,*,*,*,特殊・ナイ,連用タ接続,無い
|
507 |
+
506 助動詞,*,*,*,特殊・ナイ,連用テ接続,無い
|
508 |
+
507 助動詞,*,*,*,特殊・ナイ,連用デ接続,無い
|
509 |
+
508 助動詞,*,*,*,特殊・ヌ,仮定形,ぬ
|
510 |
+
509 助動詞,*,*,*,特殊・ヌ,基本形,ぬ
|
511 |
+
510 助動詞,*,*,*,特殊・ヌ,体言接続,ぬ
|
512 |
+
511 助動詞,*,*,*,特殊・ヌ,文語基本形,ぬ
|
513 |
+
512 助動詞,*,*,*,特殊・ヌ,連用ニ接続,ぬ
|
514 |
+
513 助動詞,*,*,*,特殊・ヌ,連用形,ぬ
|
515 |
+
514 助動詞,*,*,*,特殊・マス,仮定形,ます
|
516 |
+
515 助動詞,*,*,*,特殊・マス,仮定形,やす
|
517 |
+
516 助動詞,*,*,*,特殊・マス,基本形,ます
|
518 |
+
517 助動詞,*,*,*,特殊・マス,基本形,やす
|
519 |
+
518 助動詞,*,*,*,特殊・マス,未然ウ接続,ます
|
520 |
+
519 助動詞,*,*,*,特殊・マス,未然ウ接続,やす
|
521 |
+
520 助動詞,*,*,*,特殊・マス,未然形,ます
|
522 |
+
521 助動詞,*,*,*,特殊・マス,未然形,やす
|
523 |
+
522 助動詞,*,*,*,特殊・マス,命令e,ます
|
524 |
+
523 助動詞,*,*,*,特殊・マス,命令e,やす
|
525 |
+
524 助動詞,*,*,*,特殊・マス,命令i,ます
|
526 |
+
525 助動詞,*,*,*,特殊・マス,命令i,やす
|
527 |
+
526 助動詞,*,*,*,特殊・マス,連用形,ます
|
528 |
+
527 助動詞,*,*,*,特殊・マス,連用形,やす
|
529 |
+
528 助動詞,*,*,*,特殊・ヤ,基本形,や
|
530 |
+
529 助動詞,*,*,*,特殊・ヤ,未然形,や
|
531 |
+
530 助動詞,*,*,*,特殊・ヤ,連用形,や
|
532 |
+
531 助動詞,*,*,*,不変化型,基本形,う
|
533 |
+
532 助動詞,*,*,*,不変化型,基本形,じ
|
534 |
+
533 助動詞,*,*,*,不変化型,基本形,じゃん
|
535 |
+
534 助動詞,*,*,*,不変化型,基本形,じゃン
|
536 |
+
535 助動詞,*,*,*,不変化型,基本形,ぬ
|
537 |
+
536 助動詞,*,*,*,不変化型,基本形,ひん
|
538 |
+
537 助動詞,*,*,*,不変化型,基本形,へん
|
539 |
+
538 助動詞,*,*,*,不変化型,基本形,まい
|
540 |
+
539 助動詞,*,*,*,不変化型,基本形,やん
|
541 |
+
540 助動詞,*,*,*,不変化型,基本形,ん
|
542 |
+
541 助動詞,*,*,*,文語・キ,基本形,き
|
543 |
+
542 助動詞,*,*,*,文語・キ,体言接続,き
|
544 |
+
543 助動詞,*,*,*,文語・キ,命令e,き
|
545 |
+
544 助動詞,*,*,*,文語・ケリ,基本形,けり
|
546 |
+
545 助動詞,*,*,*,文語・ケリ,体言接続,けり
|
547 |
+
546 助動詞,*,*,*,文語・ゴトシ,基本形,ごとし
|
548 |
+
547 助動詞,*,*,*,文語・ゴトシ,基本形,如し
|
549 |
+
548 助動詞,*,*,*,文語・ゴトシ,体言接続,ごとし
|
550 |
+
549 助動詞,*,*,*,文語・ゴトシ,体言接続,如し
|
551 |
+
550 助動詞,*,*,*,文語・ゴトシ,連用形,ごとし
|
552 |
+
551 助動詞,*,*,*,文語・ゴトシ,連用形,如し
|
553 |
+
552 助動詞,*,*,*,文語・ナリ,仮定形,たり
|
554 |
+
553 助動詞,*,*,*,文語・ナリ,仮定形,なり
|
555 |
+
554 助動詞,*,*,*,文語・ナリ,基本形,たり
|
556 |
+
555 助動詞,*,*,*,文語・ナリ,基本形,なり
|
557 |
+
556 助動詞,*,*,*,文語・ナリ,体言接続,たり
|
558 |
+
557 助動詞,*,*,*,文語・ナリ,体言接続,なり
|
559 |
+
558 助動詞,*,*,*,文語・ナリ,未然形,たり
|
560 |
+
559 助動詞,*,*,*,文語・ナリ,未然形,なり
|
561 |
+
560 助動詞,*,*,*,文語・ナリ,命令e,たり
|
562 |
+
561 助動詞,*,*,*,文語・ナリ,命令e,なり
|
563 |
+
562 助動詞,*,*,*,文語・ベシ,仮定形,べし
|
564 |
+
563 助動詞,*,*,*,��語・ベシ,基本形,べし
|
565 |
+
564 助動詞,*,*,*,文語・ベシ,体言接続,べし
|
566 |
+
565 助動詞,*,*,*,文語・ベシ,未然形,べし
|
567 |
+
566 助動詞,*,*,*,文語・ベシ,連用形,べし
|
568 |
+
567 助動詞,*,*,*,文語・マジ,仮定形,まじ
|
569 |
+
568 助動詞,*,*,*,文語・マジ,基本形,まじ
|
570 |
+
569 助動詞,*,*,*,文語・マジ,体言接続,まじ
|
571 |
+
570 助動詞,*,*,*,文語・マジ,連用形,まじ
|
572 |
+
571 助動詞,*,*,*,文語・リ,基本形,り
|
573 |
+
572 助動詞,*,*,*,文語・リ,体言接続,り
|
574 |
+
573 助動詞,*,*,*,文語・ル,仮定形,る
|
575 |
+
574 助動詞,*,*,*,文語・ル,基本形,る
|
576 |
+
575 助動詞,*,*,*,文語・ル,体言接続,る
|
577 |
+
576 助動詞,*,*,*,文語・ル,未然形,る
|
578 |
+
577 助動詞,*,*,*,文語・ル,命令e,る
|
579 |
+
578 助動詞,*,*,*,文語・ル,命令yo,る
|
580 |
+
579 助動詞,*,*,*,文語・ル,連用形,る
|
581 |
+
580 接続詞,*,*,*,*,*,*
|
582 |
+
581 接続詞,*,*,*,*,*,および
|
583 |
+
582 接頭詞,形容詞接続,*,*,*,*,*
|
584 |
+
583 接頭詞,数接続,*,*,*,*,*
|
585 |
+
584 接頭詞,動詞接続,*,*,*,*,*
|
586 |
+
585 接頭詞,名詞接続,*,*,*,*,*
|
587 |
+
586 動詞,自立,*,*,カ変・クル,仮定形,*
|
588 |
+
587 動詞,自立,*,*,カ変・クル,仮定縮約1,*
|
589 |
+
588 動詞,自立,*,*,カ変・クル,基本形,*
|
590 |
+
589 動詞,自立,*,*,カ変・クル,体言接続特殊,*
|
591 |
+
590 動詞,自立,*,*,カ変・クル,体言接続特殊2,*
|
592 |
+
591 動詞,自立,*,*,カ変・クル,未然ウ接続,*
|
593 |
+
592 動詞,自立,*,*,カ変・クル,未然形,*
|
594 |
+
593 動詞,自立,*,*,カ変・クル,命令i,*
|
595 |
+
594 動詞,自立,*,*,カ変・クル,命令yo,*
|
596 |
+
595 動詞,自立,*,*,カ変・クル,連用形,*
|
597 |
+
596 動詞,自立,*,*,カ変・来ル,仮定形,*
|
598 |
+
597 動詞,自立,*,*,カ変・来ル,仮定縮約1,*
|
599 |
+
598 動詞,自立,*,*,カ変・来ル,基本形,*
|
600 |
+
599 動詞,自立,*,*,カ変・来ル,体言接続特殊,*
|
601 |
+
600 動詞,自立,*,*,カ変・来ル,体言接続特殊2,*
|
602 |
+
601 動詞,自立,*,*,カ変・来ル,未然ウ接続,*
|
603 |
+
602 動詞,自立,*,*,カ変・来ル,未然形,*
|
604 |
+
603 動詞,自立,*,*,カ変・来ル,命令i,*
|
605 |
+
604 動詞,自立,*,*,カ変・来ル,命令yo,*
|
606 |
+
605 動詞,自立,*,*,カ変・来ル,連用形,*
|
607 |
+
606 動詞,自立,*,*,サ変・−スル,仮定形,*
|
608 |
+
607 動詞,自立,*,*,サ変・−スル,仮定縮約1,*
|
609 |
+
608 動詞,自立,*,*,サ変・−スル,基本形,*
|
610 |
+
609 動詞,自立,*,*,サ変・−スル,文語基本形,*
|
611 |
+
610 動詞,自立,*,*,サ変・−スル,未然ウ接続,*
|
612 |
+
611 動詞,自立,*,*,サ変・−スル,未然レル接続,*
|
613 |
+
612 動詞,自立,*,*,サ変・−スル,未然形,*
|
614 |
+
613 動詞,自立,*,*,サ変・−スル,命令ro,*
|
615 |
+
614 動詞,自立,*,*,サ変・−スル,命令yo,*
|
616 |
+
615 動詞,自立,*,*,サ変・−ズル,仮定形,*
|
617 |
+
616 動詞,自立,*,*,サ変・−ズル,仮定縮約1,*
|
618 |
+
617 動詞,自立,*,*,サ変・−ズル,基本形,*
|
619 |
+
618 動詞,自立,*,*,サ変・−ズル,文語基本形,*
|
620 |
+
619 動詞,自立,*,*,サ変・−ズル,未然ウ接続,*
|
621 |
+
620 動詞,自立,*,*,サ変・−ズル,未然形,*
|
622 |
+
621 動詞,自立,*,*,サ変・−ズル,命令yo,*
|
623 |
+
622 動詞,自立,*,*,サ変・スル,仮定形,する
|
624 |
+
623 動詞,自立,*,*,サ変・スル,仮定縮約1,する
|
625 |
+
624 動詞,自立,*,*,サ変・スル,基本形,する
|
626 |
+
625 動詞,自立,*,*,サ変・スル,体言接続特殊,する
|
627 |
+
626 動詞,自立,*,*,サ変・スル,体言接続特殊2,する
|
628 |
+
627 動詞,自立,*,*,サ変・スル,文語基本形,する
|
629 |
+
628 動詞,自立,*,*,サ変・スル,未然ウ接続,する
|
630 |
+
629 動詞,自立,*,*,サ変・スル,未然ヌ接続,する
|
631 |
+
630 動詞,自立,*,*,サ変・スル,未然レル接続,する
|
632 |
+
631 動詞,自立,*,*,サ変・スル,未然形,する
|
633 |
+
632 動詞,自立,*,*,サ変・スル,命令i,する
|
634 |
+
633 動詞,自立,*,*,サ変・スル,命令ro,する
|
635 |
+
634 動詞,自立,*,*,サ変・スル,命令yo,する
|
636 |
+
635 動詞,自立,*,*,サ変・スル,連用形,する
|
637 |
+
636 動詞,自立,*,*,ラ変,仮定形,*
|
638 |
+
637 動詞,自立,*,*,ラ変,基本形,*
|
639 |
+
638 動詞,自立,*,*,ラ変,体言接続,*
|
640 |
+
639 動詞,自立,*,*,ラ変,未然形,*
|
641 |
+
640 動詞,自立,*,*,ラ変,命令e,*
|
642 |
+
641 動詞,自立,*,*,ラ変,連用形,*
|
643 |
+
642 動詞,自立,*,*,一段,*,*
|
644 |
+
643 動詞,自立,*,*,一段,仮定形,*
|
645 |
+
644 動詞,自立,*,*,一段,仮定縮約1,*
|
646 |
+
645 動詞,自立,*,*,一段,基本形,*
|
647 |
+
646 動詞,自立,*,*,一段,基本形-促音便,*
|
648 |
+
647 動詞,自立,*,*,一段,体言接続特殊,*
|
649 |
+
648 動詞,自立,*,*,一段,未然ウ接続,*
|
650 |
+
649 動詞,自立,*,*,一段,未然形,*
|
651 |
+
650 動詞,自立,*,*,一段,命令ro,*
|
652 |
+
651 動詞,自立,*,*,一段,命令yo,*
|
653 |
+
652 動詞,自立,*,*,一段,連用形,*
|
654 |
+
653 動詞,自立,*,*,一段・クレル,仮定形,*
|
655 |
+
654 動詞,自立,*,*,一段・クレル,仮定縮約1,*
|
656 |
+
655 動詞,自立,*,*,一段・クレル,基本形,*
|
657 |
+
656 動詞,自立,*,*,一段・クレル,未然ウ接続,*
|
658 |
+
657 動詞,自立,*,*,一段・クレル,未然形,*
|
659 |
+
658 動詞,自立,*,*,一段・クレル,未然特殊,*
|
660 |
+
659 動詞,自立,*,*,一段・クレル,命令e,*
|
661 |
+
660 動詞,自立,*,*,一段・クレル,命令ro,*
|
662 |
+
661 動詞,自立,*,*,一段・クレル,命令yo,*
|
663 |
+
662 動詞,自立,*,*,一段・クレル,連用形,*
|
664 |
+
663 動詞,自立,*,*,一段・得ル,仮定形,*
|
665 |
+
664 動詞,自立,*,*,一段・得ル,基本形,*
|
666 |
+
665 動詞,自立,*,*,下二・カ行,仮定形,*
|
667 |
+
666 動詞,自立,*,*,下二・カ行,基本形,*
|
668 |
+
667 動詞,自立,*,*,下二・カ行,体言接続,*
|
669 |
+
668 動詞,自立,*,*,下二・カ行,未然形,*
|
670 |
+
669 動詞,自立,*,*,下二・カ行,命令yo,*
|
671 |
+
670 動詞,自立,*,*,下二・カ行,連用形,*
|
672 |
+
671 動詞,自立,*,*,下二・ガ行,仮定形,*
|
673 |
+
672 動詞,自立,*,*,下二・ガ行,基本形,*
|
674 |
+
673 動詞,自立,*,*,下二・ガ行,体言接続,*
|
675 |
+
674 動詞,自立,*,*,下二・ガ行,未然形,*
|
676 |
+
675 動詞,自立,*,*,下二・ガ行,命令yo,*
|
677 |
+
676 動詞,自立,*,*,下二・ガ行,連用形,*
|
678 |
+
677 動詞,自立,*,*,下二・ダ行,仮定形,*
|
679 |
+
678 動詞,自立,*,*,下二・ダ行,基本形,*
|
680 |
+
679 動詞,自立,*,*,下二・ダ行,体言接続,*
|
681 |
+
680 動詞,自立,*,*,下二・ダ行,未然形,*
|
682 |
+
681 動詞,自立,*,*,下二・ダ行,命令yo,*
|
683 |
+
682 動詞,自立,*,*,下二・ダ行,連用形,*
|
684 |
+
683 動詞,自立,*,*,下二・ハ行,仮定形,*
|
685 |
+
684 動詞,自立,*,*,下二・ハ行,基本形,*
|
686 |
+
685 動詞,自立,*,*,下二・ハ行,体言接続,*
|
687 |
+
686 動詞,自立,*,*,下二・ハ行,未然形,*
|
688 |
+
687 動詞,自立,*,*,下二・ハ行,命令yo,*
|
689 |
+
688 動詞,自立,*,*,下二・ハ行,連用形,*
|
690 |
+
689 動詞,自立,*,*,下二・マ行,仮定形,*
|
691 |
+
690 動詞,自立,*,*,下二・マ行,基本形,*
|
692 |
+
691 動詞,自立,*,*,下二・マ行,体言接続,*
|
693 |
+
692 動詞,自立,*,*,下二・マ行,未然形,*
|
694 |
+
693 動詞,自立,*,*,下二・マ行,命令yo,*
|
695 |
+
694 動詞,自立,*,*,下二・マ行,連用形,*
|
696 |
+
695 動詞,自立,*,*,下二・得,仮定形,*
|
697 |
+
696 動詞,自立,*,*,下二・得,基本形,*
|
698 |
+
697 動詞,自立,*,*,下二・得,体言接続,*
|
699 |
+
698 動詞,自立,*,*,下二・得,未然ウ接続,*
|
700 |
+
699 動詞,自立,*,*,下二・得,未然形,*
|
701 |
+
700 動詞,自立,*,*,下二・得,命令yo,*
|
702 |
+
701 動詞,自立,*,*,下二・得,連用形,*
|
703 |
+
702 動詞,自立,*,*,五段・カ行イ音便,*,*
|
704 |
+
703 動詞,自立,*,*,五段・カ行イ音便,仮定形,*
|
705 |
+
704 動詞,自立,*,*,五段・カ行イ音便,仮定形,行く
|
706 |
+
705 動詞,自立,*,*,五段・カ行イ音便,仮定縮約1,*
|
707 |
+
706 動詞,自立,*,*,五段・カ行イ音便,仮定縮約1,行く
|
708 |
+
707 動詞,自立,*,*,五段・カ行イ音便,基本形,*
|
709 |
+
708 動詞,自立,*,*,五段・カ行イ音便,基本形,行く
|
710 |
+
709 動詞,自立,*,*,五段・カ行イ音便,未然ウ接続,*
|
711 |
+
710 動詞,自立,*,*,五段・カ行イ音便,未然ウ接続,行く
|
712 |
+
711 動詞,自立,*,*,五段・カ行イ音便,未然形,*
|
713 |
+
712 動詞,自立,*,*,五段・カ行イ音便,未然形,行く
|
714 |
+
713 動詞,自立,*,*,五段・カ行イ音便,命令e,*
|
715 |
+
714 動詞,自立,*,*,五段・カ行イ音便,命令e,行く
|
716 |
+
715 動詞,自立,*,*,五段・カ行イ音便,連用タ接続,*
|
717 |
+
716 動詞,自立,*,*,五段・カ行イ音便,連用タ接続,行く
|
718 |
+
717 動詞,自立,*,*,五段・カ行イ音便,連用形,*
|
719 |
+
718 動詞,自立,*,*,五段・カ行イ音便,連用形,行く
|
720 |
+
719 動詞,自立,*,*,五段・カ行促音便,仮定形,*
|
721 |
+
720 動詞,自立,*,*,五段・カ行促音便,仮定形,行く
|
722 |
+
721 動詞,自立,*,*,五段・カ行促音便,仮定縮約1,*
|
723 |
+
722 動詞,自立,*,*,五段・カ行促音便,仮定縮約1,行く
|
724 |
+
723 動詞,自立,*,*,五段・カ行促音便,基本形,*
|
725 |
+
724 動詞,自立,*,*,五段・カ行促音便,基本形,行く
|
726 |
+
725 動詞,自立,*,*,五段・カ行促音便,未然ウ接続,*
|
727 |
+
726 動詞,自立,*,*,五段・カ行促音便,未然ウ接続,行く
|
728 |
+
727 動詞,自立,*,*,五段・カ行促音便,未然形,*
|
729 |
+
728 動詞,自立,*,*,五段・カ行促音便,未然形,行く
|
730 |
+
729 動詞,自立,*,*,五段・カ行促音便,命令e,*
|
731 |
+
730 動詞,自立,*,*,五段・カ行促音便,命令e,行く
|
732 |
+
731 動詞,自立,*,*,五段・カ行促音便,連用タ接続,*
|
733 |
+
732 動詞,自立,*,*,五段・カ行促音便,連用タ接続,行く
|
734 |
+
733 動詞,自立,*,*,五段・カ行促音便,連用形,*
|
735 |
+
734 動詞,自立,*,*,五段・カ行促音便,連用形,行く
|
736 |
+
735 動詞,自立,*,*,五段・カ行促音便ユク,仮定形,*
|
737 |
+
736 動詞,自立,*,*,五段・カ行促音便ユク,仮定形,行く
|
738 |
+
737 動詞,自立,*,*,五段・カ行促音便ユク,仮定縮約1,*
|
739 |
+
738 動詞,自立,*,*,五段・カ行促音便ユク,仮定縮約1,行く
|
740 |
+
739 動詞,自立,*,*,五段・カ行促音便ユク,基本形,*
|
741 |
+
740 動詞,自立,*,*,五段・カ行促音便ユク,基本形,行く
|
742 |
+
741 動詞,自立,*,*,五段・カ行促音便ユク,未然ウ接続,*
|
743 |
+
742 動詞,自立,*,*,五段・カ行促音便ユク,未然ウ接続,行く
|
744 |
+
743 動詞,自立,*,*,五段・カ行促音便ユク,未然形,*
|
745 |
+
744 動詞,自立,*,*,五段・カ行促音便ユク,未然形,行く
|
746 |
+
745 動詞,自立,*,*,五段・カ行促音便ユク,命令e,*
|
747 |
+
746 動詞,自立,*,*,五段・カ行促音便ユク,命令e,行く
|
748 |
+
747 動詞,自立,*,*,五段・カ行促音便ユク,連用形,*
|
749 |
+
748 動詞,自立,*,*,五段・カ行促音便ユク,連用形,行く
|
750 |
+
749 動詞,自立,*,*,五段・ガ行,*,*
|
751 |
+
750 動詞,自立,*,*,五段・ガ行,仮定形,*
|
752 |
+
751 動詞,自立,*,*,五段・ガ行,仮定縮約1,*
|
753 |
+
752 動詞,自立,*,*,五段・ガ行,基本形,*
|
754 |
+
753 動詞,自立,*,*,五段・ガ行,未然ウ接続,*
|
755 |
+
754 動詞,自立,*,*,五段・ガ行,未然形,*
|
756 |
+
755 動詞,自立,*,*,五段・ガ行,命令e,*
|
757 |
+
756 動詞,自立,*,*,五段・ガ行,連用タ接続,*
|
758 |
+
757 動詞,自立,*,*,五段・ガ行,連用形,*
|
759 |
+
758 動詞,自立,*,*,五段・サ行,*,*
|
760 |
+
759 動詞,自立,*,*,五段・サ行,仮定形,*
|
761 |
+
760 動詞,自立,*,*,五段・サ行,仮定縮約1,*
|
762 |
+
761 動詞,自立,*,*,五段・サ行,基本形,*
|
763 |
+
762 動詞,自立,*,*,五段・サ行,未然ウ接続,*
|
764 |
+
763 動詞,自立,*,*,五段・サ行,未然形,*
|
765 |
+
764 動詞,自立,*,*,五段・サ行,命令e,*
|
766 |
+
765 動詞,自立,*,*,五段・サ行,連用形,*
|
767 |
+
766 動詞,自立,*,*,五段・タ行,*,*
|
768 |
+
767 動詞,自立,*,*,五段・タ行,仮定形,*
|
769 |
+
768 動詞,自立,*,*,五段・タ行,仮定縮約1,*
|
770 |
+
769 動詞,自立,*,*,五段・タ行,基本形,*
|
771 |
+
770 動詞,自立,*,*,五段・タ行,未然ウ接続,*
|
772 |
+
771 動詞,自立,*,*,五段・タ行,未然形,*
|
773 |
+
772 動詞,自立,*,*,五段・タ行,命令e,*
|
774 |
+
773 動詞,自立,*,*,五段・タ行,連用タ接続,*
|
775 |
+
774 動詞,自立,*,*,五段・タ行,連用形,*
|
776 |
+
775 動詞,自立,*,*,五段・ナ行,仮定形,*
|
777 |
+
776 動詞,自立,*,*,五段・ナ行,仮定縮約1,*
|
778 |
+
777 動詞,自立,*,*,五段・ナ行,基本形,*
|
779 |
+
778 動詞,自立,*,*,五段・ナ行,未然ウ接続,*
|
780 |
+
779 動詞,自立,*,*,五段・ナ行,未然形,*
|
781 |
+
780 動詞,自立,*,*,五段・ナ行,命令e,*
|
782 |
+
781 動詞,自立,*,*,五段・ナ行,連用タ接続,*
|
783 |
+
782 動詞,自立,*,*,五段・ナ行,連用形,*
|
784 |
+
783 動詞,自立,*,*,五段・バ行,*,*
|
785 |
+
784 動詞,自立,*,*,五段・バ行,仮定形,*
|
786 |
+
785 動詞,自立,*,*,五段・バ行,仮定縮約1,*
|
787 |
+
786 動詞,自立,*,*,五段・バ行,基本形,*
|
788 |
+
787 動詞,自立,*,*,五段・バ行,未然ウ接続,*
|
789 |
+
788 動詞,自立,*,*,五段・バ行,未然形,*
|
790 |
+
789 動詞,自立,*,*,五段・バ行,命令e,*
|
791 |
+
790 動詞,自立,*,*,五段・バ行,連用タ接続,*
|
792 |
+
791 動詞,自立,*,*,五段・バ行,連用形,*
|
793 |
+
792 動詞,自立,*,*,五段・マ行,*,*
|
794 |
+
793 動詞,自立,*,*,五段・マ行,仮定形,*
|
795 |
+
794 動詞,自立,*,*,五段・マ行,仮定縮約1,*
|
796 |
+
795 動詞,自立,*,*,五段・マ行,基本形,*
|
797 |
+
796 動詞,自立,*,*,五段・マ行,未然ウ接続,*
|
798 |
+
797 動詞,自立,*,*,五段・マ行,未然形,*
|
799 |
+
798 動詞,自立,*,*,五段・マ行,命令e,*
|
800 |
+
799 動詞,自立,*,*,五段・マ行,連用タ接続,*
|
801 |
+
800 動詞,自立,*,*,五段・マ行,連用形,*
|
802 |
+
801 動詞,自立,*,*,五段・ラ行,*,*
|
803 |
+
802 動詞,自立,*,*,五段・ラ行,*,する
|
804 |
+
803 動詞,自立,*,*,五段・ラ行,仮定形,*
|
805 |
+
804 動詞,自立,*,*,五段・ラ行,仮定形,する
|
806 |
+
805 動詞,自立,*,*,五段・ラ行,仮定縮約1,*
|
807 |
+
806 動詞,自立,*,*,五段・ラ行,仮定縮約1,する
|
808 |
+
807 動詞,自立,*,*,五段・ラ行,基本形,*
|
809 |
+
808 動詞,自立,*,*,五段・ラ行,基本形,する
|
810 |
+
809 動詞,自立,*,*,五段・ラ行,体言接続特殊,*
|
811 |
+
810 動詞,自立,*,*,五段・ラ行,体言接続特殊,する
|
812 |
+
811 動詞,自立,*,*,五段・ラ行,体言接続特殊2,*
|
813 |
+
812 動詞,自立,*,*,五段・ラ行,体言接続特殊2,する
|
814 |
+
813 動詞,自立,*,*,五段・ラ行,未然ウ接続,*
|
815 |
+
814 動詞,自立,*,*,五段・ラ行,未然ウ接続,する
|
816 |
+
815 動詞,自立,*,*,五段・ラ行,未然形,*
|
817 |
+
816 動詞,自立,*,*,五段・ラ行,未然形,する
|
818 |
+
817 動詞,自立,*,*,五段・ラ行,未然特殊,*
|
819 |
+
818 動詞,自立,*,*,五段・ラ行,未然特殊,する
|
820 |
+
819 動詞,自立,*,*,五段・ラ行,命令e,*
|
821 |
+
820 動詞,自立,*,*,五段・ラ行,命令e,する
|
822 |
+
821 動詞,自立,*,*,五段・ラ行,連用タ接続,*
|
823 |
+
822 動詞,自立,*,*,五段・ラ行,連用タ接続,する
|
824 |
+
823 動詞,自立,*,*,五段・ラ行,連用形,*
|
825 |
+
824 動詞,自立,*,*,五段・ラ行,連用形,する
|
826 |
+
825 動詞,自立,*,*,五段・ラ行特殊,仮定形,*
|
827 |
+
826 動詞,自立,*,*,五段・ラ行特殊,仮定縮約1,*
|
828 |
+
827 動詞,自立,*,*,五段・ラ行特殊,基本形,*
|
829 |
+
828 動詞,自立,*,*,五段・ラ行特殊,未然ウ接続,*
|
830 |
+
829 動詞,自立,*,*,五段・ラ行特殊,未然形,*
|
831 |
+
830 動詞,自立,*,*,五段・ラ行特殊,未然特殊,*
|
832 |
+
831 動詞,自立,*,*,五段・ラ行特殊,命令e,*
|
833 |
+
832 動詞,自立,*,*,五段・ラ行特殊,命令i,*
|
834 |
+
833 動詞,自立,*,*,五段・ラ行特殊,連用タ接続,*
|
835 |
+
834 動詞,自立,*,*,五段・ラ行特殊,連用形,*
|
836 |
+
835 動詞,自立,*,*,五段・ワ行ウ音便,*,*
|
837 |
+
836 動詞,自立,*,*,五段・ワ行ウ音便,仮定形,*
|
838 |
+
837 動詞,自立,*,*,五段・ワ行ウ音便,仮定形,言う
|
839 |
+
838 動詞,自立,*,*,五段・ワ行ウ音便,基本形,*
|
840 |
+
839 動詞,自立,*,*,五段・ワ行ウ音便,基本形,言う
|
841 |
+
840 動詞,自立,*,*,五段・ワ行ウ音便,未��ウ接続,*
|
842 |
+
841 動詞,自立,*,*,五段・ワ行ウ音便,未然ウ接続,言う
|
843 |
+
842 動詞,自立,*,*,五段・ワ行ウ音便,未然形,*
|
844 |
+
843 動詞,自立,*,*,五段・ワ行ウ音便,未然形,言う
|
845 |
+
844 動詞,自立,*,*,五段・ワ行ウ音便,命令e,*
|
846 |
+
845 動詞,自立,*,*,五段・ワ行ウ音便,命令e,言う
|
847 |
+
846 動詞,自立,*,*,五段・ワ行ウ音便,連用タ接続,*
|
848 |
+
847 動詞,自立,*,*,五段・ワ行ウ音便,連用タ接続,言う
|
849 |
+
848 動詞,自立,*,*,五段・ワ行ウ音便,連用形,*
|
850 |
+
849 動詞,自立,*,*,五段・ワ行ウ音便,連用形,言う
|
851 |
+
850 動詞,自立,*,*,五段・ワ行促音便,*,*
|
852 |
+
851 動詞,自立,*,*,五段・ワ行促音便,仮定形,*
|
853 |
+
852 動詞,自立,*,*,五段・ワ行促音便,仮定形,言う
|
854 |
+
853 動詞,自立,*,*,五段・ワ行促音便,仮定形,行う
|
855 |
+
854 動詞,自立,*,*,五段・ワ行促音便,基本形,*
|
856 |
+
855 動詞,自立,*,*,五段・ワ行促音便,基本形,言う
|
857 |
+
856 動詞,自立,*,*,五段・ワ行促音便,基本形,行う
|
858 |
+
857 動詞,自立,*,*,五段・ワ行促音便,未然ウ接続,*
|
859 |
+
858 動詞,自立,*,*,五段・ワ行促音便,未然ウ接続,言う
|
860 |
+
859 動詞,自立,*,*,五段・ワ行促音便,未然ウ接続,行う
|
861 |
+
860 動詞,自立,*,*,五段・ワ行促音便,未然形,*
|
862 |
+
861 動詞,自立,*,*,五段・ワ行促音便,未然形,言う
|
863 |
+
862 動詞,自立,*,*,五段・ワ行促音便,未然形,行う
|
864 |
+
863 動詞,自立,*,*,五段・ワ行促音便,命令e,*
|
865 |
+
864 動詞,自立,*,*,五段・ワ行促音便,命令e,言う
|
866 |
+
865 動詞,自立,*,*,五段・ワ行促音便,命令e,行う
|
867 |
+
866 動詞,自立,*,*,五段・ワ行促音便,連用タ接続,*
|
868 |
+
867 動詞,自立,*,*,五段・ワ行促音便,連用タ接続,言う
|
869 |
+
868 動詞,自立,*,*,五段・ワ行促音便,連用タ接続,行う
|
870 |
+
869 動詞,自立,*,*,五段・ワ行促音便,連用形,*
|
871 |
+
870 動詞,自立,*,*,五段・ワ行促音便,連用形,言う
|
872 |
+
871 動詞,自立,*,*,五段・ワ行促音便,連用形,行う
|
873 |
+
872 動詞,自立,*,*,四段・サ行,仮定形,*
|
874 |
+
873 動詞,自立,*,*,四段・サ行,基本形,*
|
875 |
+
874 動詞,自立,*,*,四段・サ行,未然形,*
|
876 |
+
875 動詞,自立,*,*,四段・サ行,命令e,*
|
877 |
+
876 動詞,自立,*,*,四段・サ行,連用形,*
|
878 |
+
877 動詞,自立,*,*,四段・タ行,仮定形,*
|
879 |
+
878 動詞,自立,*,*,四段・タ行,基本形,*
|
880 |
+
879 動詞,自立,*,*,四段・タ行,未然形,*
|
881 |
+
880 動詞,自立,*,*,四段・タ行,命令e,*
|
882 |
+
881 動詞,自立,*,*,四段・タ行,連用形,*
|
883 |
+
882 動詞,自立,*,*,四段・ハ行,仮定形,*
|
884 |
+
883 動詞,自立,*,*,四段・ハ行,基本形,*
|
885 |
+
884 動詞,自立,*,*,四段・ハ行,未然形,*
|
886 |
+
885 動詞,自立,*,*,四段・ハ行,命令e,*
|
887 |
+
886 動詞,自立,*,*,四段・ハ行,連用形,*
|
888 |
+
887 動詞,自立,*,*,四段・バ行,仮定形,*
|
889 |
+
888 動詞,自立,*,*,四段・バ行,基本形,*
|
890 |
+
889 動詞,自立,*,*,四段・バ行,未然形,*
|
891 |
+
890 動詞,自立,*,*,四段・バ行,命令e,*
|
892 |
+
891 動詞,自立,*,*,四段・バ行,連用形,*
|
893 |
+
892 動詞,自立,*,*,上二・ダ行,仮定形,*
|
894 |
+
893 動詞,自立,*,*,上二・ダ行,基本形,*
|
895 |
+
894 動詞,自立,*,*,上二・ダ行,現代基本形,*
|
896 |
+
895 動詞,自立,*,*,上二・ダ行,体言接続,*
|
897 |
+
896 動詞,自立,*,*,上二・ダ行,未然形,*
|
898 |
+
897 動詞,自立,*,*,上二・ダ行,命令yo,*
|
899 |
+
898 動詞,自立,*,*,上二・ダ行,連用形,*
|
900 |
+
899 動詞,自立,*,*,上二・ハ行,仮定形,*
|
901 |
+
900 動詞,自立,*,*,上二・ハ行,基本形,*
|
902 |
+
901 動詞,自立,*,*,上二・ハ行,体言接続,*
|
903 |
+
902 動詞,自立,*,*,上二・ハ行,未然形,*
|
904 |
+
903 動詞,自立,*,*,上二・ハ行,命令yo,*
|
905 |
+
904 動詞,自立,*,*,上二・ハ行,連用形,*
|
906 |
+
905 動詞,接尾,*,*,一段,仮定形,*
|
907 |
+
906 動詞,接尾,*,*,一段,仮定縮約1,*
|
908 |
+
907 動詞,接尾,*,*,一段,基本形,*
|
909 |
+
908 動詞,接尾,*,*,一段,基本形-促音便,*
|
910 |
+
909 動詞,接尾,*,*,一段,体言接続特殊,*
|
911 |
+
910 動詞,接尾,*,*,一段,未然ウ接続,*
|
912 |
+
911 動詞,接尾,*,*,一段,未然形,*
|
913 |
+
912 動詞,接尾,*,*,一段,命令ro,*
|
914 |
+
913 動詞,接尾,*,*,一段,命令yo,*
|
915 |
+
914 動詞,接尾,*,*,一段,連用形,*
|
916 |
+
915 動詞,接尾,*,*,五段・サ行,仮定形,*
|
917 |
+
916 動詞,接尾,*,*,五段・サ行,仮定縮約1,*
|
918 |
+
917 動詞,接尾,*,*,五段・サ行,基本形,*
|
919 |
+
918 動詞,接尾,*,*,五段・サ行,未然ウ接続,*
|
920 |
+
919 動詞,接尾,*,*,五段・サ行,未然形,*
|
921 |
+
920 動詞,接尾,*,*,五段・サ行,命令e,*
|
922 |
+
921 動詞,接尾,*,*,五段・サ行,連用形,*
|
923 |
+
922 動詞,接尾,*,*,五段・ラ行,仮定形,*
|
924 |
+
923 動詞,接尾,*,*,五段・ラ行,仮定縮約1,*
|
925 |
+
924 動詞,接尾,*,*,五段・ラ行,基本形,*
|
926 |
+
925 動詞,接尾,*,*,五段・ラ行,体言接続特殊,*
|
927 |
+
926 動詞,接尾,*,*,五段・ラ行,体言接続特殊2,*
|
928 |
+
927 動詞,接尾,*,*,五段・ラ行,未然ウ接続,*
|
929 |
+
928 動詞,接尾,*,*,五段・ラ行,未然形,*
|
930 |
+
929 動詞,接尾,*,*,五段・ラ行,未然特殊,*
|
931 |
+
930 動詞,接尾,*,*,五段・ラ行,命令e,*
|
932 |
+
931 動詞,接尾,*,*,五段・ラ行,連用タ接続,*
|
933 |
+
932 動詞,接尾,*,*,五���・ラ行,連用形,*
|
934 |
+
933 動詞,非自立,*,*,カ変・クル,仮定形,来る
|
935 |
+
934 動詞,非自立,*,*,カ変・クル,仮定縮約1,来る
|
936 |
+
935 動詞,非自立,*,*,カ変・クル,基本形,来る
|
937 |
+
936 動詞,非自立,*,*,カ変・クル,体言接続特殊,来る
|
938 |
+
937 動詞,非自立,*,*,カ変・クル,体言接続特殊2,来る
|
939 |
+
938 動詞,非自立,*,*,カ変・クル,未然ウ接続,来る
|
940 |
+
939 動詞,非自立,*,*,カ変・クル,未然形,来る
|
941 |
+
940 動詞,非自立,*,*,カ変・クル,命令i,来る
|
942 |
+
941 動詞,非自立,*,*,カ変・クル,命令yo,来る
|
943 |
+
942 動詞,非自立,*,*,カ変・クル,連用形,来る
|
944 |
+
943 動詞,非自立,*,*,カ変・来ル,仮定形,来る
|
945 |
+
944 動詞,非自立,*,*,カ変・来ル,仮定縮約1,来る
|
946 |
+
945 動詞,非自立,*,*,カ変・来ル,基本形,来る
|
947 |
+
946 動詞,非自立,*,*,カ変・来ル,体言接続特殊,来る
|
948 |
+
947 動詞,非自立,*,*,カ変・来ル,体言接続特殊2,来る
|
949 |
+
948 動詞,非自立,*,*,カ変・来ル,未然ウ接続,来る
|
950 |
+
949 動詞,非自立,*,*,カ変・来ル,未然形,来る
|
951 |
+
950 動詞,非自立,*,*,カ変・来ル,命令i,来る
|
952 |
+
951 動詞,非自立,*,*,カ変・来ル,命令yo,来る
|
953 |
+
952 動詞,非自立,*,*,カ変・来ル,連用形,来る
|
954 |
+
953 動詞,非自立,*,*,一段,*,*
|
955 |
+
954 動詞,非自立,*,*,一段,仮定形,*
|
956 |
+
955 動詞,非自立,*,*,一段,仮定形,る
|
957 |
+
956 動詞,非自立,*,*,一段,仮定縮約1,*
|
958 |
+
957 動詞,非自立,*,*,一段,仮定縮約1,る
|
959 |
+
958 動詞,非自立,*,*,一段,基本形,*
|
960 |
+
959 動詞,非自立,*,*,一段,基本形,る
|
961 |
+
960 動詞,非自立,*,*,一段,基本形-促音便,*
|
962 |
+
961 動詞,非自立,*,*,一段,基本形-促音便,る
|
963 |
+
962 動詞,非自立,*,*,一段,体言接続特殊,*
|
964 |
+
963 動詞,非自立,*,*,一段,体言接続特殊,る
|
965 |
+
964 動詞,非自立,*,*,一段,未然ウ接続,*
|
966 |
+
965 動詞,非自立,*,*,一段,未然ウ接続,る
|
967 |
+
966 動詞,非自立,*,*,一段,未然形,*
|
968 |
+
967 動詞,非自立,*,*,一段,命令ro,*
|
969 |
+
968 動詞,非自立,*,*,一段,命令ro,る
|
970 |
+
969 動詞,非自立,*,*,一段,命令yo,*
|
971 |
+
970 動詞,非自立,*,*,一段,命令yo,る
|
972 |
+
971 動詞,非自立,*,*,一段,連用形,*
|
973 |
+
972 動詞,非自立,*,*,一段・クレル,仮定形,くれる
|
974 |
+
973 動詞,非自立,*,*,一段・クレル,仮定縮約1,くれる
|
975 |
+
974 動詞,非自立,*,*,一段・クレル,基本形,くれる
|
976 |
+
975 動詞,非自立,*,*,一段・クレル,未然ウ接続,くれる
|
977 |
+
976 動詞,非自立,*,*,一段・クレル,未然形,くれる
|
978 |
+
977 動詞,非自立,*,*,一段・クレル,未然特殊,くれる
|
979 |
+
978 動詞,非自立,*,*,一段・クレル,命令e,くれる
|
980 |
+
979 動詞,非自立,*,*,一段・クレル,命令ro,くれる
|
981 |
+
980 動詞,非自立,*,*,一段・クレル,命令yo,くれる
|
982 |
+
981 動詞,非自立,*,*,一段・クレル,連用形,くれる
|
983 |
+
982 動詞,非自立,*,*,一段・得ル,仮定形,*
|
984 |
+
983 動詞,非自立,*,*,一段・得ル,基本形,*
|
985 |
+
984 動詞,非自立,*,*,五段・カ行イ音便,*,*
|
986 |
+
985 動詞,非自立,*,*,五段・カ行イ音便,仮定形,*
|
987 |
+
986 動詞,非自立,*,*,五段・カ行イ音便,仮定形,おく
|
988 |
+
987 動詞,非自立,*,*,五段・カ行イ音便,仮定形,続く
|
989 |
+
988 動詞,非自立,*,*,五段・カ行イ音便,仮定形,抜く
|
990 |
+
989 動詞,非自立,*,*,五段・カ行イ音便,仮定縮約1,*
|
991 |
+
990 動詞,非自立,*,*,五段・カ行イ音便,仮定縮約1,おく
|
992 |
+
991 動詞,非自立,*,*,五段・カ行イ音便,仮定縮約1,続く
|
993 |
+
992 動詞,非自立,*,*,五段・カ行イ音便,仮定縮約1,抜く
|
994 |
+
993 動詞,非自立,*,*,五段・カ行イ音便,基本形,*
|
995 |
+
994 動詞,非自立,*,*,五段・カ行イ音便,基本形,おく
|
996 |
+
995 動詞,非自立,*,*,五段・カ行イ音便,基本形,続く
|
997 |
+
996 動詞,非自立,*,*,五段・カ行イ音便,基本形,抜く
|
998 |
+
997 動詞,非自立,*,*,五段・カ行イ音便,未然ウ接続,*
|
999 |
+
998 動詞,非自立,*,*,五段・カ行イ音便,未然ウ接続,おく
|
1000 |
+
999 動詞,非自立,*,*,五段・カ行イ音便,未然ウ接続,続く
|
1001 |
+
1000 動詞,非自立,*,*,五段・カ行イ音便,未然ウ接続,抜く
|
1002 |
+
1001 動詞,非自立,*,*,五段・カ行イ音便,未然形,*
|
1003 |
+
1002 動詞,非自立,*,*,五段・カ行イ音便,未然形,おく
|
1004 |
+
1003 動詞,非自立,*,*,五段・カ行イ音便,未然形,続く
|
1005 |
+
1004 動詞,非自立,*,*,五段・カ行イ音便,未然形,抜く
|
1006 |
+
1005 動詞,非自立,*,*,五段・カ行イ音便,命令e,*
|
1007 |
+
1006 動詞,非自立,*,*,五段・カ行イ音便,命令e,おく
|
1008 |
+
1007 動詞,非自立,*,*,五段・カ行イ音便,命令e,続く
|
1009 |
+
1008 動詞,非自立,*,*,五段・カ行イ音便,命令e,抜く
|
1010 |
+
1009 動詞,非自立,*,*,五段・カ行イ音便,連用タ接続,*
|
1011 |
+
1010 動詞,非自立,*,*,五段・カ行イ音便,連用タ接続,おく
|
1012 |
+
1011 動詞,非自立,*,*,五段・カ行イ音便,連用タ接続,続く
|
1013 |
+
1012 動詞,非自立,*,*,五段・カ行イ音便,連用タ接続,抜く
|
1014 |
+
1013 動詞,非自立,*,*,五段・カ行イ音便,連用形,*
|
1015 |
+
1014 動詞,非自立,*,*,五段・カ行イ音便,連用形,おく
|
1016 |
+
1015 動詞,非自立,*,*,五段・カ行イ音便,連用形,続く
|
1017 |
+
1016 動詞,非自立,*,*,五段・カ行イ音便,連用形,抜く
|
1018 |
+
1017 動詞,非自立,*,*,五段・カ行促音便,仮定形,*
|
1019 |
+
1018 動詞,非自立,*,*,五段・カ行促音便,仮定形,いく
|
1020 |
+
1019 動詞,非自立,*,*,五段・カ行促音便,仮定形,く
|
1021 |
+
1020 動詞,非自立,*,*,五段・カ行促音便,仮定形,行く
|
1022 |
+
1021 動詞,非自立,*,*,五段・カ行促音便,仮定縮約1,*
|
1023 |
+
1022 動詞,非自立,*,*,五段・カ行促音便,仮定縮約1,いく
|
1024 |
+
1023 動詞,非自立,*,*,五段・カ行促音便,仮定縮約1,く
|
1025 |
+
1024 動詞,非自立,*,*,五段・カ行促音便,仮定縮約1,行く
|
1026 |
+
1025 動詞,非自立,*,*,五段・カ行促音便,基本形,*
|
1027 |
+
1026 動詞,非自立,*,*,五段・カ行促音便,基本形,いく
|
1028 |
+
1027 動詞,非自立,*,*,五段・カ行促音便,基本形,く
|
1029 |
+
1028 動詞,非自立,*,*,五段・カ行促音便,基本形,行く
|
1030 |
+
1029 動詞,非自立,*,*,五段・カ行促音便,未然ウ接続,*
|
1031 |
+
1030 動詞,非自立,*,*,五段・カ行促音便,未然ウ接続,いく
|
1032 |
+
1031 動詞,非自立,*,*,五段・カ行促音便,未然ウ接続,く
|
1033 |
+
1032 動詞,非自立,*,*,五段・カ行促音便,未然ウ接続,行く
|
1034 |
+
1033 動詞,非自立,*,*,五段・カ行促音便,未然形,*
|
1035 |
+
1034 動詞,非自立,*,*,五段・カ行促音便,未然形,いく
|
1036 |
+
1035 動詞,非自立,*,*,五段・カ行促音便,未然形,く
|
1037 |
+
1036 動詞,非自立,*,*,五段・カ行促音便,未然形,行く
|
1038 |
+
1037 動詞,非自立,*,*,五段・カ行促音便,命令e,*
|
1039 |
+
1038 動詞,非自立,*,*,五段・カ行促音便,命令e,いく
|
1040 |
+
1039 動詞,非自立,*,*,五段・カ行促音便,命令e,く
|
1041 |
+
1040 動詞,非自立,*,*,五段・カ行促音便,命令e,行く
|
1042 |
+
1041 動詞,非自立,*,*,五段・カ行促音便,連用タ接続,*
|
1043 |
+
1042 動詞,非自立,*,*,五段・カ行促音便,連用タ接続,いく
|
1044 |
+
1043 動詞,非自立,*,*,五段・カ行促音便,連用タ接続,く
|
1045 |
+
1044 動詞,非自立,*,*,五段・カ行促音便,連用タ接続,行く
|
1046 |
+
1045 動詞,非自立,*,*,五段・カ行促音便,連用形,*
|
1047 |
+
1046 動詞,非自立,*,*,五段・カ行促音便,連用形,いく
|
1048 |
+
1047 動詞,非自立,*,*,五段・カ行促音便,連用形,く
|
1049 |
+
1048 動詞,非自立,*,*,五段・カ行促音便,連用形,行く
|
1050 |
+
1049 動詞,非自立,*,*,五段・カ行促音便ユク,仮定形,ゆく
|
1051 |
+
1050 動詞,非自立,*,*,五段・カ行促音便ユク,仮定形,行く
|
1052 |
+
1051 動詞,非自立,*,*,五段・カ行促音便ユク,仮定縮約1,ゆく
|
1053 |
+
1052 動詞,非自立,*,*,五段・カ行促音便ユク,仮定縮約1,行く
|
1054 |
+
1053 動詞,非自立,*,*,五段・カ行促音便ユク,基本形,ゆく
|
1055 |
+
1054 動詞,非自立,*,*,五段・カ行促音便ユク,基本形,行く
|
1056 |
+
1055 動詞,非自立,*,*,五段・カ行促音便ユク,未然ウ接続,ゆく
|
1057 |
+
1056 動詞,非自立,*,*,五段・カ行促音便ユク,未然ウ接続,行く
|
1058 |
+
1057 動詞,非自立,*,*,五段・カ行促音便ユク,未然形,ゆく
|
1059 |
+
1058 動詞,非自立,*,*,五段・カ行促音便ユク,未然形,行く
|
1060 |
+
1059 動詞,非自立,*,*,五段・カ行促音便ユク,命令e,ゆく
|
1061 |
+
1060 動詞,非自立,*,*,五段・カ行促音便ユク,命令e,行く
|
1062 |
+
1061 動詞,非自立,*,*,五段・カ行促音便ユク,連用形,ゆく
|
1063 |
+
1062 動詞,非自立,*,*,五段・カ行促音便ユク,連用形,行く
|
1064 |
+
1063 動詞,非自立,*,*,五段・サ行,*,*
|
1065 |
+
1064 動詞,非自立,*,*,五段・サ行,*,尽くす
|
1066 |
+
1065 動詞,非自立,*,*,五段・サ行,仮定形,*
|
1067 |
+
1066 動詞,非自立,*,*,五段・サ行,仮定形,出す
|
1068 |
+
1067 動詞,非自立,*,*,五段・サ行,仮定形,尽くす
|
1069 |
+
1068 動詞,非自立,*,*,五段・サ行,仮定形,直す
|
1070 |
+
1069 動詞,非自立,*,*,五段・サ行,仮定縮約1,*
|
1071 |
+
1070 動詞,非自立,*,*,五段・サ行,仮定縮約1,出す
|
1072 |
+
1071 動詞,非自立,*,*,五段・サ行,仮定縮約1,尽くす
|
1073 |
+
1072 動詞,非自立,*,*,五段・サ行,仮定縮約1,直す
|
1074 |
+
1073 動詞,非自立,*,*,五段・サ行,基本形,出す
|
1075 |
+
1074 動詞,非自立,*,*,五段・サ行,基本形,尽くす
|
1076 |
+
1075 動詞,非自立,*,*,五段・サ行,基本形,直す
|
1077 |
+
1076 動詞,非自立,*,*,五段・サ行,未然ウ接続,*
|
1078 |
+
1077 動詞,非自立,*,*,五段・サ行,未然ウ接続,出す
|
1079 |
+
1078 動詞,非自立,*,*,五段・サ行,未然ウ接続,尽くす
|
1080 |
+
1079 動詞,非自立,*,*,五段・サ行,未然ウ接続,直す
|
1081 |
+
1080 動詞,非自立,*,*,五段・サ行,未然形,*
|
1082 |
+
1081 動詞,非自立,*,*,五段・サ行,未然形,出す
|
1083 |
+
1082 動詞,非自立,*,*,五段・サ行,未然形,尽くす
|
1084 |
+
1083 動詞,非自立,*,*,五段・サ行,未然形,直す
|
1085 |
+
1084 動詞,非自立,*,*,五段・サ行,命令e,*
|
1086 |
+
1085 動詞,非自立,*,*,五段・サ行,命令e,出す
|
1087 |
+
1086 動詞,非自立,*,*,五段・サ行,命令e,尽くす
|
1088 |
+
1087 動詞,非自立,*,*,五段・サ行,命令e,直す
|
1089 |
+
1088 動詞,非自立,*,*,五段・サ行,連用形,*
|
1090 |
+
1089 動詞,非自立,*,*,五段・サ行,連用形,出す
|
1091 |
+
1090 動詞,非自立,*,*,五段・サ���,連用形,尽くす
|
1092 |
+
1091 動詞,非自立,*,*,五段・サ行,連用形,直す
|
1093 |
+
1092 動詞,非自立,*,*,五段・タ行,*,*
|
1094 |
+
1093 動詞,非自立,*,*,五段・タ行,仮定形,*
|
1095 |
+
1094 動詞,非自立,*,*,五段・タ行,仮定縮約1,*
|
1096 |
+
1095 動詞,非自立,*,*,五段・タ行,未然ウ接続,*
|
1097 |
+
1096 動詞,非自立,*,*,五段・タ行,未然形,*
|
1098 |
+
1097 動詞,非自立,*,*,五段・タ行,命令e,*
|
1099 |
+
1098 動詞,非自立,*,*,五段・タ行,連用タ接続,*
|
1100 |
+
1099 動詞,非自立,*,*,五段・タ行,連用形,*
|
1101 |
+
1100 動詞,非自立,*,*,五段・ナ行,*,*
|
1102 |
+
1101 動詞,非自立,*,*,五段・ナ行,仮定形,*
|
1103 |
+
1102 動詞,非自立,*,*,五段・ナ行,仮定縮約1,*
|
1104 |
+
1103 動詞,非自立,*,*,五段・ナ行,未然ウ接続,*
|
1105 |
+
1104 動詞,非自立,*,*,五段・ナ行,未然形,*
|
1106 |
+
1105 動詞,非自立,*,*,五段・ナ行,命令e,*
|
1107 |
+
1106 動詞,非自立,*,*,五段・ナ行,連用タ接続,*
|
1108 |
+
1107 動詞,非自立,*,*,五段・ナ行,連用形,*
|
1109 |
+
1108 動詞,非自立,*,*,五段・マ行,*,*
|
1110 |
+
1109 動詞,非自立,*,*,五段・マ行,仮定形,*
|
1111 |
+
1110 動詞,非自立,*,*,五段・マ行,仮定形,込む
|
1112 |
+
1111 動詞,非自立,*,*,五段・マ行,仮定縮約1,*
|
1113 |
+
1112 動詞,非自立,*,*,五段・マ行,仮定縮約1,込む
|
1114 |
+
1113 動詞,非自立,*,*,五段・マ行,基本形,込む
|
1115 |
+
1114 動詞,非自立,*,*,五段・マ行,未然ウ接続,*
|
1116 |
+
1115 動詞,非自立,*,*,五段・マ行,未然ウ接続,込む
|
1117 |
+
1116 動詞,非自立,*,*,五段・マ行,未然形,*
|
1118 |
+
1117 動詞,非自立,*,*,五段・マ行,未然形,込む
|
1119 |
+
1118 動詞,非自立,*,*,五段・マ行,命令e,*
|
1120 |
+
1119 動詞,非自立,*,*,五段・マ行,命令e,込む
|
1121 |
+
1120 動詞,非自立,*,*,五段・マ行,連用タ接続,*
|
1122 |
+
1121 動詞,非自立,*,*,五段・マ行,連用タ接続,込む
|
1123 |
+
1122 動詞,非自立,*,*,五段・マ行,連用形,*
|
1124 |
+
1123 動詞,非自立,*,*,五段・マ行,連用形,込む
|
1125 |
+
1124 動詞,非自立,*,*,五段・ラ行,*,*
|
1126 |
+
1125 動詞,非自立,*,*,五段・ラ行,*,切る
|
1127 |
+
1126 動詞,非自立,*,*,五段・ラ行,仮定形,*
|
1128 |
+
1127 動詞,非自立,*,*,五段・ラ行,仮定形,ある
|
1129 |
+
1128 動詞,非自立,*,*,五段・ラ行,仮定形,おる
|
1130 |
+
1129 動詞,非自立,*,*,五段・ラ行,仮定形,かかる
|
1131 |
+
1130 動詞,非自立,*,*,五段・ラ行,仮定形,きる
|
1132 |
+
1131 動詞,非自立,*,*,五段・ラ行,仮定形,なる
|
1133 |
+
1132 動詞,非自立,*,*,五段・ラ行,仮定形,まいる
|
1134 |
+
1133 動詞,非自立,*,*,五段・ラ行,仮定形,まわる
|
1135 |
+
1134 動詞,非自立,*,*,五段・ラ行,仮定形,やる
|
1136 |
+
1135 動詞,非自立,*,*,五段・ラ行,仮定形,回る
|
1137 |
+
1136 動詞,非自立,*,*,五段・ラ行,仮定形,参る
|
1138 |
+
1137 動詞,非自立,*,*,五段・ラ行,仮定形,終わる
|
1139 |
+
1138 動詞,非自立,*,*,五段・ラ行,仮定形,切る
|
1140 |
+
1139 動詞,非自立,*,*,五段・ラ行,仮定縮約1,*
|
1141 |
+
1140 動詞,非自立,*,*,五段・ラ行,仮定縮約1,ある
|
1142 |
+
1141 動詞,非自立,*,*,五段・ラ行,仮定縮約1,おる
|
1143 |
+
1142 動詞,非自立,*,*,五段・ラ行,仮定縮約1,かかる
|
1144 |
+
1143 動詞,非自立,*,*,五段・ラ行,仮定縮約1,きる
|
1145 |
+
1144 動詞,非自立,*,*,五段・ラ行,仮定縮約1,なる
|
1146 |
+
1145 動詞,非自立,*,*,五段・ラ行,仮定縮約1,まいる
|
1147 |
+
1146 動詞,非自立,*,*,五段・ラ行,仮定縮約1,まわる
|
1148 |
+
1147 動詞,非自立,*,*,五段・ラ行,仮定縮約1,やる
|
1149 |
+
1148 動詞,非自立,*,*,五段・ラ行,仮定縮約1,回る
|
1150 |
+
1149 動詞,非自立,*,*,五段・ラ行,仮定縮約1,参る
|
1151 |
+
1150 動詞,非自立,*,*,五段・ラ行,仮定縮約1,終わる
|
1152 |
+
1151 動詞,非自立,*,*,五段・ラ行,仮定縮約1,切る
|
1153 |
+
1152 動詞,非自立,*,*,五段・ラ行,基本形,*
|
1154 |
+
1153 動詞,非自立,*,*,五段・ラ行,基本形,ある
|
1155 |
+
1154 動詞,非自立,*,*,五段・ラ行,基本形,おる
|
1156 |
+
1155 動詞,非自立,*,*,五段・ラ行,基本形,かかる
|
1157 |
+
1156 動詞,非自立,*,*,五段・ラ行,基本形,きる
|
1158 |
+
1157 動詞,非自立,*,*,五段・ラ行,基本形,なる
|
1159 |
+
1158 動詞,非自立,*,*,五段・ラ行,基本形,まいる
|
1160 |
+
1159 動詞,非自立,*,*,五段・ラ行,基本形,まわる
|
1161 |
+
1160 動詞,非自立,*,*,五段・ラ行,基本形,やる
|
1162 |
+
1161 動詞,非自立,*,*,五段・ラ行,基本形,回る
|
1163 |
+
1162 動詞,非自立,*,*,五段・ラ行,基本形,参る
|
1164 |
+
1163 動詞,非自立,*,*,五段・ラ行,基本形,終わる
|
1165 |
+
1164 動詞,非自立,*,*,五段・ラ行,基本形,切る
|
1166 |
+
1165 動詞,非自立,*,*,五段・ラ行,体言接続特殊,*
|
1167 |
+
1166 動詞,非自立,*,*,五段・ラ行,体言接続特殊,ある
|
1168 |
+
1167 動詞,非自立,*,*,五段・ラ行,体言接続特殊,おる
|
1169 |
+
1168 動詞,非自立,*,*,五段・ラ行,体言接続特殊,かかる
|
1170 |
+
1169 動詞,非自立,*,*,五段・ラ行,体言接続特殊,きる
|
1171 |
+
1170 動詞,非自立,*,*,五段・ラ行,体言接続特殊,なる
|
1172 |
+
1171 動詞,非自立,*,*,五段・ラ行,体言接続特殊,まいる
|
1173 |
+
1172 動詞,非自立,*,*,五段・ラ行,体言接続特殊,まわる
|
1174 |
+
1173 動詞,非自立,*,*,五段・ラ行,体言接続特殊,やる
|
1175 |
+
1174 動詞,非自立,*,*,五段・ラ行,体言接続特殊,回る
|
1176 |
+
1175 動詞,非自立,*,*,五段・ラ行,体言接続特殊,参る
|
1177 |
+
1176 動詞,非自立,*,*,五段・ラ行,体言接続特殊,終わる
|
1178 |
+
1177 動詞,非自立,*,*,五段・ラ行,体言接続特殊,切る
|
1179 |
+
1178 動詞,非自立,*,*,五段・ラ行,体言接続特殊2,*
|
1180 |
+
1179 動詞,非自立,*,*,五段・ラ行,体言接続特殊2,ある
|
1181 |
+
1180 動詞,非自立,*,*,五段・ラ行,体言接続特殊2,おる
|
1182 |
+
1181 動詞,非自立,*,*,五段・ラ行,体言接続特殊2,かかる
|
1183 |
+
1182 動詞,非自立,*,*,五段・ラ行,体言接続特殊2,きる
|
1184 |
+
1183 動詞,非自立,*,*,五段・ラ行,体言接続特殊2,なる
|
1185 |
+
1184 動詞,非自立,*,*,五段・ラ行,体言接続特殊2,まいる
|
1186 |
+
1185 動詞,非自立,*,*,五段・ラ行,体言接続特殊2,まわる
|
1187 |
+
1186 動詞,非自立,*,*,五段・ラ行,体言接続特殊2,やる
|
1188 |
+
1187 動詞,非自立,*,*,五段・ラ行,体言接続特殊2,回る
|
1189 |
+
1188 動詞,非自立,*,*,五段・ラ行,体言接続特殊2,参る
|
1190 |
+
1189 動詞,非自立,*,*,五段・ラ行,体言接続特殊2,終わる
|
1191 |
+
1190 動詞,非自立,*,*,五段・ラ行,体言接続特殊2,切る
|
1192 |
+
1191 動詞,非自立,*,*,五段・ラ行,未然ウ接続,*
|
1193 |
+
1192 動詞,非自立,*,*,五段・ラ行,未然ウ接続,ある
|
1194 |
+
1193 動詞,非自立,*,*,五段・ラ行,未然ウ接続,おる
|
1195 |
+
1194 動詞,非自立,*,*,五段・ラ行,未然ウ接続,かかる
|
1196 |
+
1195 動詞,非自立,*,*,五段・ラ行,未然ウ接続,きる
|
1197 |
+
1196 動詞,非自立,*,*,五段・ラ行,未然ウ接続,なる
|
1198 |
+
1197 動詞,非自立,*,*,五段・ラ行,未然ウ接続,まいる
|
1199 |
+
1198 動詞,非自立,*,*,五段・ラ行,未然ウ接続,まわる
|
1200 |
+
1199 動詞,非自立,*,*,五段・ラ行,未然ウ接続,やる
|
1201 |
+
1200 動詞,非自立,*,*,五段・ラ行,未然ウ接続,回る
|
1202 |
+
1201 動詞,非自立,*,*,五段・ラ行,未然ウ接続,参る
|
1203 |
+
1202 動詞,非自立,*,*,五段・ラ行,未然ウ接続,終わる
|
1204 |
+
1203 動詞,非自立,*,*,五段・ラ行,未然ウ接続,切る
|
1205 |
+
1204 動詞,非自立,*,*,五段・ラ行,未然形,*
|
1206 |
+
1205 動詞,非自立,*,*,五段・ラ行,未然形,ある
|
1207 |
+
1206 動詞,非自立,*,*,五段・ラ行,未然形,おる
|
1208 |
+
1207 動詞,非自立,*,*,五段・ラ行,未然形,かかる
|
1209 |
+
1208 動詞,非自立,*,*,五段・ラ行,未然形,きる
|
1210 |
+
1209 動詞,非自立,*,*,五段・ラ行,未然形,なる
|
1211 |
+
1210 動詞,非自立,*,*,五段・ラ行,未然形,まいる
|
1212 |
+
1211 動詞,非自立,*,*,五段・ラ行,未然形,まわる
|
1213 |
+
1212 動詞,非自立,*,*,五段・ラ行,未然形,やる
|
1214 |
+
1213 動詞,非自立,*,*,五段・ラ行,未然形,回る
|
1215 |
+
1214 動詞,非自立,*,*,五段・ラ行,未然形,参る
|
1216 |
+
1215 動詞,非自立,*,*,五段・ラ行,未然形,終わる
|
1217 |
+
1216 動詞,非自立,*,*,五段・ラ行,未然形,切る
|
1218 |
+
1217 動詞,非自立,*,*,五段・ラ行,未然特殊,*
|
1219 |
+
1218 動詞,非自立,*,*,五段・ラ行,未然特殊,ある
|
1220 |
+
1219 動詞,非自立,*,*,五段・ラ行,未然特殊,おる
|
1221 |
+
1220 動詞,非自立,*,*,五段・ラ行,未然特殊,かかる
|
1222 |
+
1221 動詞,非自立,*,*,五段・ラ行,未然特殊,きる
|
1223 |
+
1222 動詞,非自立,*,*,五段・ラ行,未然特殊,なる
|
1224 |
+
1223 動詞,非自立,*,*,五段・ラ行,未然特殊,まいる
|
1225 |
+
1224 動詞,非自立,*,*,五段・ラ行,未然特殊,まわる
|
1226 |
+
1225 動詞,非自立,*,*,五段・ラ行,未然特殊,やる
|
1227 |
+
1226 動詞,非自立,*,*,五段・ラ行,未然特殊,回る
|
1228 |
+
1227 動詞,非自立,*,*,五段・ラ行,未然特殊,参る
|
1229 |
+
1228 動詞,非自立,*,*,五段・ラ行,未然特殊,終わる
|
1230 |
+
1229 動詞,非自立,*,*,五段・ラ行,未然特殊,切る
|
1231 |
+
1230 動詞,非自立,*,*,五段・ラ行,命令e,*
|
1232 |
+
1231 動詞,非自立,*,*,五段・ラ行,命令e,ある
|
1233 |
+
1232 動詞,非自立,*,*,五段・ラ行,命令e,おる
|
1234 |
+
1233 動詞,非自立,*,*,五段・ラ行,命令e,かかる
|
1235 |
+
1234 動詞,非自立,*,*,五段・ラ行,命令e,きる
|
1236 |
+
1235 動詞,非自立,*,*,五段・ラ行,命令e,なる
|
1237 |
+
1236 動詞,非自立,*,*,五段・ラ行,命令e,まいる
|
1238 |
+
1237 動詞,非自立,*,*,五段・ラ行,命令e,まわる
|
1239 |
+
1238 動詞,非自立,*,*,五段・ラ行,命令e,やる
|
1240 |
+
1239 動詞,非自立,*,*,五段・ラ行,命令e,回る
|
1241 |
+
1240 動詞,非自立,*,*,五段・ラ行,命令e,参る
|
1242 |
+
1241 動詞,非自立,*,*,五段・ラ行,命令e,終わる
|
1243 |
+
1242 動詞,非自立,*,*,五段・ラ行,命令e,切る
|
1244 |
+
1243 動詞,非自立,*,*,五段・ラ行,連用タ接続,*
|
1245 |
+
1244 動詞,非自立,*,*,五段・ラ行,連用タ接続,ある
|
1246 |
+
1245 動詞,非自立,*,*,五段・ラ行,連用タ接続,おる
|
1247 |
+
1246 動詞,非自立,*,*,五段・ラ行,連用タ接続,かかる
|
1248 |
+
1247 動詞,非自立,*,*,五段・ラ行,連用タ接続,きる
|
1249 |
+
1248 動詞,非自立,*,*,五段・ラ行,連用タ接続,なる
|
1250 |
+
1249 動詞,非自立,*,*,五段・ラ行,連用タ接続,まいる
|
1251 |
+
1250 動詞,非自立,*,*,五段・ラ行,連用タ接続,まわる
|
1252 |
+
1251 動詞,非自立,*,*,五段・ラ行,連用タ接続,やる
|
1253 |
+
1252 動詞,非自立,*,*,五段・ラ行,連用タ接続,��る
|
1254 |
+
1253 動詞,非自立,*,*,五段・ラ行,連用タ接続,参る
|
1255 |
+
1254 動詞,非自立,*,*,五段・ラ行,連用タ接続,終わる
|
1256 |
+
1255 動詞,非自立,*,*,五段・ラ行,連用タ接続,切る
|
1257 |
+
1256 動詞,非自立,*,*,五段・ラ行,連用形,*
|
1258 |
+
1257 動詞,非自立,*,*,五段・ラ行,連用形,ある
|
1259 |
+
1258 動詞,非自立,*,*,五段・ラ行,連用形,おる
|
1260 |
+
1259 動詞,非自立,*,*,五段・ラ行,連用形,かかる
|
1261 |
+
1260 動詞,非自立,*,*,五段・ラ行,連用形,きる
|
1262 |
+
1261 動詞,非自立,*,*,五段・ラ行,連用形,なる
|
1263 |
+
1262 動詞,非自立,*,*,五段・ラ行,連用形,まいる
|
1264 |
+
1263 動詞,非自立,*,*,五段・ラ行,連用形,まわる
|
1265 |
+
1264 動詞,非自立,*,*,五段・ラ行,連用形,やる
|
1266 |
+
1265 動詞,非自立,*,*,五段・ラ行,連用形,回る
|
1267 |
+
1266 動詞,非自立,*,*,五段・ラ行,連用形,参る
|
1268 |
+
1267 動詞,非自立,*,*,五段・ラ行,連用形,終わる
|
1269 |
+
1268 動詞,非自立,*,*,五段・ラ行,連用形,切る
|
1270 |
+
1269 動詞,非自立,*,*,五段・ラ行特殊,仮定形,なさる
|
1271 |
+
1270 動詞,非自立,*,*,五段・ラ行特殊,仮定形,らっしゃる
|
1272 |
+
1271 動詞,非自立,*,*,五段・ラ行特殊,仮定形,下さる
|
1273 |
+
1272 動詞,非自立,*,*,五段・ラ行特殊,仮定縮約1,なさる
|
1274 |
+
1273 動詞,非自立,*,*,五段・ラ行特殊,仮定縮約1,らっしゃる
|
1275 |
+
1274 動詞,非自立,*,*,五段・ラ行特殊,仮定縮約1,下さる
|
1276 |
+
1275 動詞,非自立,*,*,五段・ラ行特殊,基本形,なさる
|
1277 |
+
1276 動詞,非自立,*,*,五段・ラ行特殊,基本形,らっしゃる
|
1278 |
+
1277 動詞,非自立,*,*,五段・ラ行特殊,基本形,下さる
|
1279 |
+
1278 動詞,非自立,*,*,五段・ラ行特殊,未然ウ接続,なさる
|
1280 |
+
1279 動詞,非自立,*,*,五段・ラ行特殊,未然ウ接続,らっしゃる
|
1281 |
+
1280 動詞,非自立,*,*,五段・ラ行特殊,未然ウ接続,下さる
|
1282 |
+
1281 動詞,非自立,*,*,五段・ラ行特殊,未然形,なさる
|
1283 |
+
1282 動詞,非自立,*,*,五段・ラ行特殊,未然形,らっしゃる
|
1284 |
+
1283 動詞,非自立,*,*,五段・ラ行特殊,未然形,下さる
|
1285 |
+
1284 動詞,非自立,*,*,五段・ラ行特殊,未然特殊,なさる
|
1286 |
+
1285 動詞,非自立,*,*,五段・ラ行特殊,未然特殊,らっしゃる
|
1287 |
+
1286 動詞,非自立,*,*,五段・ラ行特殊,未然特殊,下さる
|
1288 |
+
1287 動詞,非自立,*,*,五段・ラ行特殊,命令e,なさる
|
1289 |
+
1288 動詞,非自立,*,*,五段・ラ行特殊,命令e,らっしゃる
|
1290 |
+
1289 動詞,非自立,*,*,五段・ラ行特殊,命令e,下さる
|
1291 |
+
1290 動詞,非自立,*,*,五段・ラ行特殊,命令i,なさる
|
1292 |
+
1291 動詞,非自立,*,*,五段・ラ行特殊,命令i,らっしゃる
|
1293 |
+
1292 動詞,非自立,*,*,五段・ラ行特殊,命令i,下さる
|
1294 |
+
1293 動詞,非自立,*,*,五段・ラ行特殊,連用タ接続,なさる
|
1295 |
+
1294 動詞,非自立,*,*,五段・ラ行特殊,連用タ接続,らっしゃる
|
1296 |
+
1295 動詞,非自立,*,*,五段・ラ行特殊,連用タ接続,下さる
|
1297 |
+
1296 動詞,非自立,*,*,五段・ラ行特殊,連用形,なさる
|
1298 |
+
1297 動詞,非自立,*,*,五段・ラ行特殊,連用形,らっしゃる
|
1299 |
+
1298 動詞,非自立,*,*,五段・ラ行特殊,連用形,下さる
|
1300 |
+
1299 動詞,非自立,*,*,五段・ワ行ウ音便,*,*
|
1301 |
+
1300 動詞,非自立,*,*,五段・ワ行ウ音便,仮定形,*
|
1302 |
+
1301 動詞,非自立,*,*,五段・ワ行ウ音便,未然ウ接続,*
|
1303 |
+
1302 動詞,非自立,*,*,五段・ワ行ウ音便,未然形,*
|
1304 |
+
1303 動詞,非自立,*,*,五段・ワ行ウ音便,命令e,*
|
1305 |
+
1304 動詞,非自立,*,*,五段・ワ行ウ音便,連用タ接続,*
|
1306 |
+
1305 動詞,非自立,*,*,五段・ワ行ウ音便,連用形,*
|
1307 |
+
1306 動詞,非自立,*,*,五段・ワ行促音便,*,*
|
1308 |
+
1307 動詞,非自立,*,*,五段・ワ行促音便,仮定形,*
|
1309 |
+
1308 動詞,非自立,*,*,五段・ワ行促音便,仮定形,しまう
|
1310 |
+
1309 動詞,非自立,*,*,五段・ワ行促音便,仮定形,もらう
|
1311 |
+
1310 動詞,非自立,*,*,五段・ワ行促音便,仮定形,合う
|
1312 |
+
1311 動詞,非自立,*,*,五段・ワ行促音便,基本形,*
|
1313 |
+
1312 動詞,非自立,*,*,五段・ワ行促音便,基本形,しまう
|
1314 |
+
1313 動詞,非自立,*,*,五段・ワ行促音便,基本形,もらう
|
1315 |
+
1314 動詞,非自立,*,*,五段・ワ行促音便,基本形,合う
|
1316 |
+
1315 動詞,非自立,*,*,五段・ワ行促音便,未然ウ接続,*
|
1317 |
+
1316 動詞,非自立,*,*,五段・ワ行促音便,未然ウ接続,しまう
|
1318 |
+
1317 動詞,非自立,*,*,五段・ワ行促音便,未然ウ接続,もらう
|
1319 |
+
1318 動詞,非自立,*,*,五段・ワ行促音便,未然ウ接続,合う
|
1320 |
+
1319 動詞,非自立,*,*,五段・ワ行促音便,未然形,*
|
1321 |
+
1320 動詞,非自立,*,*,五段・ワ行促音便,未然形,しまう
|
1322 |
+
1321 動詞,非自立,*,*,五段・ワ行促音便,未然形,もらう
|
1323 |
+
1322 動詞,非自立,*,*,五段・ワ行促音便,未然形,合う
|
1324 |
+
1323 動詞,非自立,*,*,五段・ワ行促音便,命令e,*
|
1325 |
+
1324 動詞,非自立,*,*,五段・ワ行促音便,命令e,しまう
|
1326 |
+
1325 動詞,非自立,*,*,五段・ワ行促音便,命令e,もらう
|
1327 |
+
1326 動詞,非自立,*,*,五段・ワ行促音便,命令e,合う
|
1328 |
+
1327 動詞,非���立,*,*,五段・ワ行促音便,連用タ接続,*
|
1329 |
+
1328 動詞,非自立,*,*,五段・ワ行促音便,連用タ接続,しまう
|
1330 |
+
1329 動詞,非自立,*,*,五段・ワ行促音便,連用タ接続,もらう
|
1331 |
+
1330 動詞,非自立,*,*,五段・ワ行促音便,連用タ接続,合う
|
1332 |
+
1331 動詞,非自立,*,*,五段・ワ行促音便,連用形,*
|
1333 |
+
1332 動詞,非自立,*,*,五段・ワ行促音便,連用形,しまう
|
1334 |
+
1333 動詞,非自立,*,*,五段・ワ行促音便,連用形,もらう
|
1335 |
+
1334 動詞,非自立,*,*,五段・ワ行促音便,連用形,合う
|
1336 |
+
1335 動詞,非自立,*,*,四段・ハ行,仮定形,*
|
1337 |
+
1336 動詞,非自立,*,*,四段・ハ行,基本形,*
|
1338 |
+
1337 動詞,非自立,*,*,四段・ハ行,未然形,*
|
1339 |
+
1338 動詞,非自立,*,*,四段・ハ行,命令e,*
|
1340 |
+
1339 動詞,非自立,*,*,四段・ハ行,連用形,*
|
1341 |
+
1340 副詞,*,*,*,*,*,*
|
1342 |
+
1341 副詞,一般,*,*,*,*,*
|
1343 |
+
1342 副詞,助詞類接続,*,*,*,*,*
|
1344 |
+
1343 名詞,サ変接続,*,*,*,*,*
|
1345 |
+
1344 名詞,ナイ形容詞語幹,*,*,*,*,*
|
1346 |
+
1345 名詞,一般,*,*,*,*,*
|
1347 |
+
1346 名詞,一般,*,*,*,0,*
|
1348 |
+
1347 名詞,形容動詞語幹,*,*,*,*,*
|
1349 |
+
1348 名詞,固有名詞,一般,*,*,*,*
|
1350 |
+
1349 名詞,固有名詞,人名,一般,*,*,*
|
1351 |
+
1350 名詞,固有名詞,人名,姓,*,*,*
|
1352 |
+
1351 名詞,固有名詞,人名,名,*,*,*
|
1353 |
+
1352 名詞,固有名詞,組織,*,*,*,*
|
1354 |
+
1353 名詞,固有名詞,地域,一般,*,*,*
|
1355 |
+
1354 名詞,固有名詞,地域,国,*,*,*
|
1356 |
+
1355 名詞,数,*,*,*,*,*
|
1357 |
+
1356 名詞,接続詞的,*,*,*,*,*
|
1358 |
+
1357 名詞,接尾,サ変接続,*,*,*,*
|
1359 |
+
1358 名詞,接尾,一般,*,*,*,*
|
1360 |
+
1359 名詞,接尾,形容動詞語幹,*,*,*,*
|
1361 |
+
1360 名詞,接尾,助数詞,*,*,*,*
|
1362 |
+
1361 名詞,接尾,助動詞語幹,*,*,*,*
|
1363 |
+
1362 名詞,接尾,人名,*,*,*,*
|
1364 |
+
1363 名詞,接尾,地域,*,*,*,*
|
1365 |
+
1364 名詞,接尾,特殊,*,*,*,*
|
1366 |
+
1365 名詞,接尾,副詞可能,*,*,*,*
|
1367 |
+
1366 名詞,代名詞,一般,*,*,*,*
|
1368 |
+
1367 名詞,代名詞,縮約,*,*,*,*
|
1369 |
+
1368 名詞,動詞非自立的,*,*,*,*,*
|
1370 |
+
1369 名詞,特殊,助動詞語幹,*,*,*,*
|
1371 |
+
1370 名詞,非自立,*,*,*,*,*
|
1372 |
+
1371 名詞,非自立,一般,*,*,*,*
|
1373 |
+
1372 名詞,非自立,形容動詞語幹,*,*,*,*
|
1374 |
+
1373 名詞,非自立,助動詞語幹,*,*,*,*
|
1375 |
+
1374 名詞,非自立,副詞可能,*,*,*,*
|
1376 |
+
1375 名詞,副詞可能,*,*,*,*,*
|
1377 |
+
1376 連体詞,*,*,*,*,*,*
|
dict/matrix.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:62fd16b4f64c851d5dc352ef0d5740c5fc83ddc7c203b2b0b1fc5271969a14ce
|
3 |
+
size 3792262
|
dict/pos-id.def
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
その他,間投,*,* 0
|
2 |
+
フィラー,*,*,* 1
|
3 |
+
感動詞,*,*,* 2
|
4 |
+
記号,アルファベット,*,* 3
|
5 |
+
記号,一般,*,* 4
|
6 |
+
記号,括弧開,*,* 5
|
7 |
+
記号,括弧閉,*,* 6
|
8 |
+
記号,句点,*,* 7
|
9 |
+
記号,空白,*,* 8
|
10 |
+
記号,読点,*,* 9
|
11 |
+
形容詞,自立,*,* 10
|
12 |
+
形容詞,接尾,*,* 11
|
13 |
+
形容詞,非自立,*,* 12
|
14 |
+
助詞,格助詞,一般,* 13
|
15 |
+
助詞,格助詞,引用,* 14
|
16 |
+
助詞,格助詞,連語,* 15
|
17 |
+
助詞,係助詞,*,* 16
|
18 |
+
助詞,終助詞,*,* 17
|
19 |
+
助詞,接続助詞,*,* 18
|
20 |
+
助詞,特殊,*,* 19
|
21 |
+
助詞,副詞化,*,* 20
|
22 |
+
助詞,副助詞,*,* 21
|
23 |
+
助詞,副助詞/並立助詞/終助詞,*,* 22
|
24 |
+
助詞,並立助詞,*,* 23
|
25 |
+
助詞,連体化,*,* 24
|
26 |
+
助動詞,*,*,* 25
|
27 |
+
接続詞,*,*,* 26
|
28 |
+
接頭詞,形容詞接続,*,* 27
|
29 |
+
接頭詞,数接続,*,* 28
|
30 |
+
接頭詞,動詞接続,*,* 29
|
31 |
+
接頭詞,名詞接続,*,* 30
|
32 |
+
動詞,自立,*,* 31
|
33 |
+
動詞,接尾,*,* 32
|
34 |
+
動詞,非自立,*,* 33
|
35 |
+
副詞,一般,*,* 34
|
36 |
+
副詞,助詞類接続,*,* 35
|
37 |
+
名詞,サ変接続,*,* 36
|
38 |
+
名詞,ナイ形容詞語幹,*,* 37
|
39 |
+
名詞,一般,*,* 38
|
40 |
+
名詞,引用文字列,*,* 39
|
41 |
+
名詞,形容動詞語幹,*,* 40
|
42 |
+
名詞,固有名詞,一般,* 41
|
43 |
+
名詞,固有名詞,人名,一般 42
|
44 |
+
名詞,固有名詞,人名,姓 43
|
45 |
+
名詞,固有名詞,人名,名 44
|
46 |
+
名詞,固有名詞,組織,* 45
|
47 |
+
名詞,固有名詞,地域,一般 46
|
48 |
+
名詞,固有名詞,地域,国 47
|
49 |
+
名詞,数,*,* 48
|
50 |
+
名詞,接続詞的,*,* 49
|
51 |
+
名詞,接尾,サ変接続,* 50
|
52 |
+
名詞,接尾,一般,* 51
|
53 |
+
名詞,接尾,形容動詞語幹,* 52
|
54 |
+
名詞,接尾,助数詞,* 53
|
55 |
+
名詞,接尾,助動詞語幹,* 54
|
56 |
+
名詞,接尾,人名,* 55
|
57 |
+
名詞,接尾,地域,* 56
|
58 |
+
名詞,接尾,特殊,* 57
|
59 |
+
名詞,接尾,副詞可能,* 58
|
60 |
+
名詞,代名詞,一般,* 59
|
61 |
+
名詞,代名詞,縮約,* 60
|
62 |
+
名詞,動詞非自立的,*,* 61
|
63 |
+
名詞,特殊,助動詞語幹,* 62
|
64 |
+
名詞,非自立,一般,* 63
|
65 |
+
名詞,非自立,形容動詞語幹,* 64
|
66 |
+
名詞,非自立,助動詞語幹,* 65
|
67 |
+
名詞,非自立,副詞可能,* 66
|
68 |
+
名詞,副詞可能,*,* 67
|
69 |
+
連体詞,*,*,* 68
|
dict/rewrite.def
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Feature(POS) to Internal State mapping
|
3 |
+
#
|
4 |
+
[unigram rewrite]
|
5 |
+
# 読み,発音をとりのぞいて, 品詞1,2,3,4,活用形,活用型,原形,よみ を使う
|
6 |
+
*,*,*,*,*,*,*,* $1,$2,$3,$4,$5,$6,$7,$8
|
7 |
+
# 読みがない場合は無視
|
8 |
+
*,*,*,*,*,*,* $1,$2,$3,$4,$5,$6,$7,*
|
9 |
+
|
10 |
+
[left rewrite]
|
11 |
+
(助詞|助動詞),*,*,*,*,*,(ない|無い) $1,$2,$3,$4,$5,$6,無い
|
12 |
+
(助詞|助動詞),終助詞,*,*,*,*,(よ|ヨ) $1,$2,$3,$4,$5,$6,よ
|
13 |
+
(助詞|助動詞),終助詞,*,*,*,*,(な|なぁ|なあ|ナ) $1,$2,$3,$4,$5,$6,な
|
14 |
+
(助詞|助動詞),終助詞,*,*,*,*,(ね|ねぇ|ねえ|ねェ|ねエ|ねっ|ねッ|ネ) $1,$2,$3,$4,$5,$6,ね
|
15 |
+
(助詞|助動詞),接続助詞,*,*,*,*,(て|ちゃ|ちゃあ) $1,$2,$3,$4,$5,$6,て
|
16 |
+
(助詞|助動詞),接続助詞,*,*,*,*,(ちゃあ|ちゃ) $1,$2,$3,$4,$5,$6,ちゃ
|
17 |
+
(助詞|助動詞),接続助詞,*,*,*,*,(で|じゃ) $1,$2,$3,$4,$5,$6,で
|
18 |
+
(助詞|助動詞),接続助詞,*,*,*,*,(けど|けれど) $1,$2,$3,$4,$5,$6,けれど
|
19 |
+
(助詞|助動詞),*,*,*,*,*,* $1,$2,$3,$4,$5,$6,$7
|
20 |
+
記号,(句点|括弧閉|括弧開),*,*,*,*,* $1,$2,$3,$4,$5,$6,BOS/EOS
|
21 |
+
BOS/EOS,*,*,*,*,*,* $1,$2,$3,$4,$5,$6,BOS/EOS
|
22 |
+
動詞,自立,*,*,*,*,(行う|行なう) $1,$2,$3,$4,$5,$6,行う
|
23 |
+
動詞,自立,*,*,*,*,(いう|言う|云う) $1,$2,$3,$4,$5,$6,言う
|
24 |
+
動詞,自立,*,*,*,*,(いく|行く) $1,$2,$3,$4,$5,$6,行く
|
25 |
+
動詞,自立,*,*,*,*,する $1,$2,$3,$4,$5,$6,する
|
26 |
+
動詞,自立,*,*,*,*,* $1,$2,$3,$4,$5,$6,*
|
27 |
+
動詞,非自立,*,*,*,*,(ある|おる|かかる|きる|なる|まいる|まわる|やる|回る|終わる|切る|参る|いらっしゃる|らっしゃる|なさる|る|もらう|しまう|続く|いく|ゆく|行く|く|くれる|おく|する) $1,$2,$3,$4,$5,$6,$7
|
28 |
+
動詞,非自立,*,*,*,*,(来る|くる) $1,$2,$3,$4,$5,$6,来る
|
29 |
+
動詞,非自立,*,*,*,*,(ぬく|抜く) $1,$2,$3,$4,$5,$6,抜く
|
30 |
+
動詞,非自立,*,*,*,*,(頂く|いただく) $1,$2,$3,$4,$5,$6,頂く
|
31 |
+
動詞,非自立,*,*,*,*,(いたす|致す) $1,$2,$3,$4,$5,$6,致す
|
32 |
+
動詞,非自立,*,*,*,*,(だす|出す) $1,$2,$3,$4,$5,$6,出す
|
33 |
+
動詞,非自立,*,*,*,*,(つくす|尽くす|尽す) $1,$2,$3,$4,$5,$6,尽くす
|
34 |
+
動詞,非自立,*,*,*,*,(直す|なおす) $1,$2,$3,$4,$5,$6,直す
|
35 |
+
動詞,非自立,*,*,*,*,(込む|こむ) $1,$2,$3,$4,$5,$6,込む
|
36 |
+
動詞,非自立,*,*,*,*,(くださる|下さる) $1,$2,$3,$4,$5,$6,下さる
|
37 |
+
動詞,非自立,*,*,*,*,(合う|あう) $1,$2,$3,$4,$5,$6,合う
|
38 |
+
動詞,非自立,*,*,*,*,* $1,$2,$3,$4,$5,$6,*
|
39 |
+
形容詞,*,*,*,*,*,(ない|無い|いい|らしい) $1,$2,$3,$4,$5,$6,無い
|
40 |
+
形容詞,接尾,*,*,*,*,(臭い|くさい) $1,$2,$3,$4,$5,$6,臭い
|
41 |
+
形容詞,接尾,*,*,*,*,(欲しい|ほしい) $1,$2,$3,$4,$5,$6,欲しい
|
42 |
+
形容詞,接尾,*,*,*,*,(ったらしい|たらしい|っぽい|ぽい) $1,$2,$3,$4,$5,$6,たらしい
|
43 |
+
形容詞,接尾,*,*,*,*,* $1,$2,$3,$4,$5,$6,*
|
44 |
+
形容詞,非自立,*,*,*,*,(難い|がたい|づらい|にくい|やすい) $1,$2,$3,$4,$5,$6,難い
|
45 |
+
形容詞,非自立,*,*,*,*,(よい|良い) $1,$2,$3,$4,$5,$6,良い
|
46 |
+
形容詞,非自立,*,*,*,*,(欲しい|ほしい) $1,$2,$3,$4,$5,$6,欲しい
|
47 |
+
形容詞,非自立,*,*,*,*,(じまう|じゃう|でく|どく|でる|どる) $1,$2,$3,$4,$5,$6,でる
|
48 |
+
形容詞,非自立,*,*,*,*,(ちまう|ちゃう|てく|とく|てる|とる) $1,$2,$3,$4,$5,$6,てる
|
49 |
+
形容詞,非自立,*,*,*,*,* $1,$2,$3,$4,$5,$6,*
|
50 |
+
接続詞,*,*,*,*,*,(及び|および|あるいは|或いは|或は|または|又は|ないし|ならびに|並びに|もしくは|若しくは) $1,$2,$3,$4,$5,$6,および
|
51 |
+
*,*,*,*,*,*,* $1,$2,$3,$4,$5,$6,*
|
52 |
+
|
53 |
+
[right rewrite]
|
54 |
+
(助詞|助動詞),*,*,*,*,*,(ない|無い) $1,$2,$3,$4,$5,$6,無い
|
55 |
+
(助詞|助動詞),終助詞,*,*,*,*,(よ|ヨ) $1,$2,$3,$4,$5,$6,よ
|
56 |
+
(助詞|助動詞),終助詞,*,*,*,*,(な|なぁ|なあ|ナ) $1,$2,$3,$4,$5,$6,な
|
57 |
+
(助詞|助動詞),終助詞,*,*,*,*,(ね|ねぇ|ねえ|ねェ|ねエ|ねっ|ねッ|ネ) $1,$2,$3,$4,$5,$6,ね
|
58 |
+
(助詞|助動詞),接続助詞,*,*,*,*,(て|ちゃ|ちゃあ) $1,$2,$3,$4,$5,$6,て
|
59 |
+
(助詞|助動詞),接続助詞,*,*,*,*,(ちゃあ|ちゃ) $1,$2,$3,$4,$5,$6,ちゃ
|
60 |
+
(助詞|助動詞),接続助詞,*,*,*,*,(で|じゃ) $1,$2,$3,$4,$5,$6,で
|
61 |
+
(助詞|助動詞),接続助詞,*,*,*,*,(けど|けれど) $1,$2,$3,$4,$5,$6,けれど
|
62 |
+
(助詞|助動詞),*,*,*,*,*,* $1,$2,$3,$4,$5,$6,$7
|
63 |
+
記号,(句点|括弧閉|括弧開),*,*,*,*,* $1,$2,$3,$4,$5,$6,BOS/EOS
|
64 |
+
BOS/EOS,*,*,*,*,*,* $1,$2,$3,$4,$5,$6,BOS/EOS
|
65 |
+
動詞,自立,*,*,*,*,(行う|行なう) $1,$2,$3,$4,$5,$6,行う
|
66 |
+
動詞,自立,*,*,*,*,(いう|言う|云う) $1,$2,$3,$4,$5,$6,言う
|
67 |
+
動詞,自立,*,*,*,*,(いく|行く) $1,$2,$3,$4,$5,$6,行く
|
68 |
+
動詞,自立,*,*,*,*,する $1,$2,$3,$4,$5,$6,する
|
69 |
+
動詞,自立,*,*,*,*,* $1,$2,$3,$4,$5,$6,*
|
70 |
+
動詞,非自立,*,*,*,*,(ある|おる|かかる|きる|なる|まいる|まわる|やる|回る|終わる|切る|参る|いらっしゃる|らっしゃる|なさる|る|もらう|しまう|続く|いく|ゆく|行く|く|くれる|おく|する) $1,$2,$3,$4,$5,$6,$7
|
71 |
+
動詞,非自立,*,*,*,*,(来る|くる) $1,$2,$3,$4,$5,$6,来る
|
72 |
+
動詞,非自立,*,*,*,*,(ぬく|抜く) $1,$2,$3,$4,$5,$6,抜く
|
73 |
+
動詞,非自立,*,*,*,*,(頂く|いただく) $1,$2,$3,$4,$5,$6,頂く
|
74 |
+
動詞,非自立,*,*,*,*,(いたす|致す) $1,$2,$3,$4,$5,$6,致す
|
75 |
+
動詞,非自立,*,*,*,*,(だす|出す) $1,$2,$3,$4,$5,$6,出す
|
76 |
+
動詞,非自立,*,*,*,*,(つくす|尽くす|尽す) $1,$2,$3,$4,$5,$6,尽くす
|
77 |
+
動詞,非自立,*,*,*,*,(直す|なおす) $1,$2,$3,$4,$5,$6,直す
|
78 |
+
動詞,非自立,*,*,*,*,(込む|こむ) $1,$2,$3,$4,$5,$6,込む
|
79 |
+
動詞,非自立,*,*,*,*,(くださる|下さる) $1,$2,$3,$4,$5,$6,下さる
|
80 |
+
動詞,非自立,*,*,*,*,(合う|あう) $1,$2,$3,$4,$5,$6,合う
|
81 |
+
動詞,非自立,*,*,*,*,* $1,$2,$3,$4,$5,$6,*
|
82 |
+
形容詞,*,*,*,*,*,(ない|無い|いい|らしい) $1,$2,$3,$4,$5,$6,無い
|
83 |
+
形容詞,接尾,*,*,*,*,(臭い|くさい) $1,$2,$3,$4,$5,$6,臭い
|
84 |
+
形容詞,接尾,*,*,*,*,(欲しい|ほしい) $1,$2,$3,$4,$5,$6,欲しい
|
85 |
+
形容詞,接尾,*,*,*,*,(ったらしい|たらしい|っぽい|ぽい) $1,$2,$3,$4,$5,$6,たらしい
|
86 |
+
形容詞,接尾,*,*,*,*,* $1,$2,$3,$4,$5,$6,*
|
87 |
+
形容詞,非自立,*,*,*,*,(難い|がたい|づらい|にくい|やすい) $1,$2,$3,$4,$5,$6,難い
|
88 |
+
形容詞,非自立,*,*,*,*,(よい|良い) $1,$2,$3,$4,$5,$6,良い
|
89 |
+
形容詞,非自立,*,*,*,*,(欲しい|ほしい) $1,$2,$3,$4,$5,$6,欲しい
|
90 |
+
形容詞,非自立,*,*,*,*,(じまう|じゃう|でく|どく|でる|どる) $1,$2,$3,$4,$5,$6,でる
|
91 |
+
形容詞,非自立,*,*,*,*,(ちまう|ちゃう|てく|とく|てる|とる) $1,$2,$3,$4,$5,$6,てる
|
92 |
+
形容詞,非自立,*,*,*,*,* $1,$2,$3,$4,$5,$6,*
|
93 |
+
接続詞,*,*,*,*,*,(及び|および|あるいは|或いは|或は|または|又は|ないし|ならびに|並びに|もしくは|若しくは) $1,$2,$3,$4,$5,$6,および
|
94 |
+
*,*,*,*,*,*,* $1,$2,$3,$4,$5,$6,*
|
dict/right-id.def
ADDED
@@ -0,0 +1,1377 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
0 BOS/EOS,*,*,*,*,*,BOS/EOS
|
2 |
+
1 その他,間投,*,*,*,*,*
|
3 |
+
2 フィラー,*,*,*,*,*,*
|
4 |
+
3 感動詞,*,*,*,*,*,*
|
5 |
+
4 記号,アルファベット,*,*,*,*,*
|
6 |
+
5 記号,一般,*,*,*,*,*
|
7 |
+
6 記号,括弧開,*,*,*,*,BOS/EOS
|
8 |
+
7 記号,括弧閉,*,*,*,*,BOS/EOS
|
9 |
+
8 記号,句点,*,*,*,*,BOS/EOS
|
10 |
+
9 記号,空白,*,*,*,*,*
|
11 |
+
10 記号,読点,*,*,*,*,*
|
12 |
+
11 形容詞,自立,*,*,形容詞・アウオ段,*,*
|
13 |
+
12 形容詞,自立,*,*,形容詞・アウオ段,ガル接続,*
|
14 |
+
13 形容詞,自立,*,*,形容詞・アウオ段,ガル接続,無い
|
15 |
+
14 形容詞,自立,*,*,形容詞・アウオ段,仮定形,*
|
16 |
+
15 形容詞,自立,*,*,形容詞・アウオ段,仮定形,無い
|
17 |
+
16 形容詞,自立,*,*,形容詞・アウオ段,仮定縮約1,*
|
18 |
+
17 形容詞,自立,*,*,形容詞・アウオ段,仮定縮約1,無い
|
19 |
+
18 形容詞,自立,*,*,形容詞・アウオ段,仮定縮約2,*
|
20 |
+
19 形容詞,自立,*,*,形容詞・アウオ段,仮定縮約2,無い
|
21 |
+
20 形容詞,自立,*,*,形容詞・アウオ段,基本形,*
|
22 |
+
21 形容詞,自立,*,*,形容詞・アウオ段,基本形,無い
|
23 |
+
22 形容詞,自立,*,*,形容詞・アウオ段,体言接続,*
|
24 |
+
23 形容詞,自立,*,*,形容詞・アウオ段,体言接続,無い
|
25 |
+
24 形容詞,自立,*,*,形容詞・アウオ段,文語基本形,*
|
26 |
+
25 形容詞,自立,*,*,形容詞・アウオ段,文語基本形,無い
|
27 |
+
26 形容詞,自立,*,*,形容詞・アウオ段,未然ウ接続,*
|
28 |
+
27 形容詞,自立,*,*,形容詞・アウオ段,未然ウ接続,無い
|
29 |
+
28 形容詞,自立,*,*,形容詞・アウオ段,未然ヌ接続,*
|
30 |
+
29 形容詞,自立,*,*,形容詞・アウオ段,未然ヌ接続,無い
|
31 |
+
30 形容詞,自立,*,*,形容詞・アウオ段,命令e,*
|
32 |
+
31 形容詞,自立,*,*,形容詞・アウオ段,命令e,無い
|
33 |
+
32 形容詞,自立,*,*,形容詞・アウオ段,連用ゴザイ接続,*
|
34 |
+
33 形容詞,自立,*,*,形容詞・アウオ段,連用ゴザイ接続,無い
|
35 |
+
34 形容詞,自立,*,*,形容詞・アウオ段,連用タ接続,*
|
36 |
+
35 形容詞,自立,*,*,形容詞・アウオ段,連用タ接続,無い
|
37 |
+
36 形容詞,自立,*,*,形容詞・アウオ段,連用テ接続,*
|
38 |
+
37 形容詞,自立,*,*,形容詞・アウオ段,連用テ接続,無い
|
39 |
+
38 形容詞,自立,*,*,形容詞・イ段,ガル接続,*
|
40 |
+
39 形容詞,自立,*,*,形容詞・イ段,仮定形,*
|
41 |
+
40 形容詞,自立,*,*,形容詞・イ段,仮定縮約1,*
|
42 |
+
41 形容詞,自立,*,*,形容詞・イ段,仮定縮約2,*
|
43 |
+
42 形容詞,自立,*,*,形容詞・イ段,基本形,*
|
44 |
+
43 形容詞,自立,*,*,形容詞・イ段,体言接続,*
|
45 |
+
44 形容詞,自立,*,*,形容詞・イ段,文語基本形,*
|
46 |
+
45 形容詞,自立,*,*,形容詞・イ段,未然ウ接続,*
|
47 |
+
46 形容詞,自立,*,*,形容詞・イ段,未然ヌ接続,*
|
48 |
+
47 形容詞,自立,*,*,形容詞・イ段,命令e,*
|
49 |
+
48 形容詞,自立,*,*,形容詞・イ段,連用ゴザイ接続,*
|
50 |
+
49 形容詞,自立,*,*,形容詞・イ段,連用タ接続,*
|
51 |
+
50 形容詞,自立,*,*,形容詞・イ段,連用テ接続,*
|
52 |
+
51 形容詞,自立,*,*,不変化型,基本形,*
|
53 |
+
52 形容詞,接尾,*,*,形容詞・アウオ段,ガル接続,*
|
54 |
+
53 形容詞,接尾,*,*,形容詞・アウオ段,ガル接続,たらしい
|
55 |
+
54 形容詞,接尾,*,*,形容詞・アウオ段,ガル接続,臭い
|
56 |
+
55 形容詞,接尾,*,*,形容詞・アウオ段,仮定形,*
|
57 |
+
56 形容詞,接尾,*,*,形容詞・アウオ段,仮定形,たらしい
|
58 |
+
57 形容詞,接尾,*,*,形容詞・アウオ段,仮定形,臭い
|
59 |
+
58 形容詞,接尾,*,*,形容詞・アウオ段,仮定縮約1,*
|
60 |
+
59 形容詞,接尾,*,*,形容詞・アウオ段,仮定縮約1,たらしい
|
61 |
+
60 形容詞,接尾,*,*,形容詞・アウオ段,仮定縮約1,臭い
|
62 |
+
61 形容詞,接尾,*,*,形容詞・アウオ段,仮定縮約2,*
|
63 |
+
62 形容詞,接尾,*,*,形容詞・アウオ段,仮定縮約2,たらしい
|
64 |
+
63 形容詞,接尾,*,*,形容詞・アウオ段,仮定縮約2,臭い
|
65 |
+
64 形容詞,接尾,*,*,形容詞・アウオ段,基本形,*
|
66 |
+
65 形容詞,接尾,*,*,形容詞・アウオ段,基本形,たらしい
|
67 |
+
66 形容詞,接尾,*,*,形容詞・アウオ段,基本形,臭い
|
68 |
+
67 形容詞,接尾,*,*,形容詞・アウオ段,体言接続,*
|
69 |
+
68 形容詞,接尾,*,*,形容詞・アウオ段,体言接続,たらしい
|
70 |
+
69 形容詞,接尾,*,*,形容詞・アウオ段,体言接続,臭い
|
71 |
+
70 形容詞,接尾,*,*,形容詞・アウオ段,文語基本形,*
|
72 |
+
71 形容詞,接尾,*,*,形容詞・アウオ段,文語基本形,たらしい
|
73 |
+
72 形容詞,接尾,*,*,形容詞・アウオ段,文語基本形,臭い
|
74 |
+
73 形容詞,接尾,*,*,形容詞・アウオ段,未然ウ接続,*
|
75 |
+
74 形容詞,接尾,*,*,形容詞・アウオ段,未然ウ接続,たらしい
|
76 |
+
75 形容詞,接尾,*,*,形容詞・アウオ段,未然ウ接続,臭い
|
77 |
+
76 形容詞,接尾,*,*,形容詞・アウオ段,未然ヌ接続,*
|
78 |
+
77 形容詞,接尾,*,*,形容詞・アウオ段,未然ヌ接続,たらしい
|
79 |
+
78 形容詞,接尾,*,*,形容詞・アウオ段,未然ヌ接続,臭い
|
80 |
+
79 形容詞,接尾,*,*,形容詞・アウオ段,命令e,*
|
81 |
+
80 形容詞,接尾,*,*,形容詞・アウオ段,命令e,たらしい
|
82 |
+
81 形容詞,接尾,*,*,形容詞・アウオ段,命令e,臭い
|
83 |
+
82 形容詞,接尾,*,*,形容詞・アウオ段,連用ゴザイ接続,*
|
84 |
+
83 形容詞,接尾,*,*,形容詞・アウオ段,連用ゴザイ接続,たらしい
|
85 |
+
84 形容詞,接尾,*,*,形容詞・アウオ段,連用ゴザイ接続,臭い
|
86 |
+
85 形容詞,接尾,*,*,形容詞・アウオ段,連用タ接続,*
|
87 |
+
86 形容詞,接尾,*,*,形容詞・アウオ段,連用タ接続,たらしい
|
88 |
+
87 形容詞,接尾,*,*,形容詞・アウオ段,連用タ接続,臭い
|
89 |
+
88 形容詞,接尾,*,*,形容詞・アウオ段,連用テ接続,*
|
90 |
+
89 形容詞,接尾,*,*,形容詞・アウオ段,連用テ接続,たらしい
|
91 |
+
90 形容詞,接尾,*,*,形容詞・アウオ段,連用テ接続,臭い
|
92 |
+
91 形容詞,接尾,*,*,形容詞・イ段,ガル接続,*
|
93 |
+
92 形容詞,接尾,*,*,形容詞・イ段,ガル接続,たらしい
|
94 |
+
93 形容詞,接尾,*,*,形容詞・イ段,仮定形,*
|
95 |
+
94 形容詞,接尾,*,*,形容詞・イ段,仮定形,たらしい
|
96 |
+
95 形容詞,接尾,*,*,形容詞・イ段,仮定縮約1,*
|
97 |
+
96 形容詞,接尾,*,*,形容詞・イ段,仮定縮約1,たらしい
|
98 |
+
97 形容詞,接尾,*,*,形容詞・イ段,仮定縮約2,*
|
99 |
+
98 形容詞,接尾,*,*,形容詞・イ段,仮定縮約2,たらしい
|
100 |
+
99 形容詞,接尾,*,*,形容詞・イ段,基本形,*
|
101 |
+
100 形容詞,接尾,*,*,形容詞・イ段,基本形,たらしい
|
102 |
+
101 形容詞,接尾,*,*,形容詞・イ段,体言接続,*
|
103 |
+
102 形容詞,接尾,*,*,形容詞・イ段,体言接続,たらしい
|
104 |
+
103 形容詞,接尾,*,*,形容詞・イ段,文語基本形,*
|
105 |
+
104 形容詞,接尾,*,*,形容詞・イ段,文語基本形,たらしい
|
106 |
+
105 形容詞,接尾,*,*,形容詞・イ段,未然ウ接続,*
|
107 |
+
106 形容詞,接尾,*,*,形容詞・イ段,未然ウ接続,たらしい
|
108 |
+
107 形容詞,接尾,*,*,形容詞・イ段,未然ヌ接続,*
|
109 |
+
108 形容詞,接尾,*,*,形容詞・イ段,未然ヌ接続,たらしい
|
110 |
+
109 形容詞,接尾,*,*,形容詞・イ段,命令e,*
|
111 |
+
110 形容詞,接尾,*,*,形容詞・イ段,命令e,たらしい
|
112 |
+
111 形容詞,接尾,*,*,形容詞・イ段,連用ゴザイ接続,*
|
113 |
+
112 形容詞,接尾,*,*,形容詞・イ段,連用ゴザイ接続,たらしい
|
114 |
+
113 形容詞,接尾,*,*,形容詞・イ段,連用タ接続,*
|
115 |
+
114 形容詞,接尾,*,*,形容詞・イ段,連用タ接続,たらしい
|
116 |
+
115 形容詞,接尾,*,*,形容詞・イ段,連用テ接続,*
|
117 |
+
116 形容詞,接尾,*,*,形容詞・イ段,連用テ接続,たらしい
|
118 |
+
117 形容詞,非自立,*,*,形容詞・アウオ段,*,*
|
119 |
+
118 形容詞,非自立,*,*,形容詞・アウオ段,ガル接続,*
|
120 |
+
119 形容詞,非自立,*,*,形容詞・アウオ段,ガル接続,難い
|
121 |
+
120 形容詞,非自立,*,*,形容詞・アウオ段,ガル接続,良い
|
122 |
+
121 形容詞,非自立,*,*,形容詞・アウオ段,仮定形,*
|
123 |
+
122 形容詞,非自立,*,*,形容詞・アウオ段,仮定形,難い
|
124 |
+
123 形容詞,非自立,*,*,形容詞・アウオ段,仮定形,良い
|
125 |
+
124 形容詞,非自立,*,*,形容詞・アウオ段,仮定縮約1,*
|
126 |
+
125 形容詞,非自立,*,*,形容詞・アウオ段,仮定縮約1,難い
|
127 |
+
126 形容詞,非自立,*,*,形容詞・アウオ段,仮定縮約1,良い
|
128 |
+
127 形容詞,非自立,*,*,形容詞・アウオ段,仮定縮約2,*
|
129 |
+
128 形容詞,非自立,*,*,形容詞・アウオ段,仮定縮約2,難い
|
130 |
+
129 形容詞,非自立,*,*,形容詞・アウオ段,仮定縮約2,良い
|
131 |
+
130 形容詞,非自立,*,*,形容詞・アウオ段,基本形,難い
|
132 |
+
131 形容詞,非自立,*,*,形容詞・アウオ段,基本形,良い
|
133 |
+
132 形容詞,非自立,*,*,形容詞・アウオ段,体言接続,*
|
134 |
+
133 形容詞,非自立,*,*,形容詞・アウオ段,体言接続,難い
|
135 |
+
134 形容詞,非自立,*,*,形容詞・アウオ段,体言接続,良い
|
136 |
+
135 形容詞,非自立,*,*,形容詞・アウオ段,文語基本形,*
|
137 |
+
136 形容詞,非自立,*,*,形容詞・アウオ段,文語基本形,難い
|
138 |
+
137 形容詞,非自立,*,*,形容詞・アウオ段,文語基本形,良い
|
139 |
+
138 形容詞,非自立,*,*,形容詞・アウオ段,未然ウ接続,*
|
140 |
+
139 形容詞,非自立,*,*,形容詞・アウオ段,未然ウ接続,難い
|
141 |
+
140 形容詞,非自立,*,*,形容詞・アウオ段,未然ウ接続,良い
|
142 |
+
141 形容詞,非自立,*,*,形容詞・アウオ段,未然ヌ接続,*
|
143 |
+
142 形容詞,非自立,*,*,形容詞・アウオ段,未然ヌ接続,難い
|
144 |
+
143 形容詞,非自立,*,*,形容詞・アウオ段,未然ヌ接続,良い
|
145 |
+
144 形容詞,非自立,*,*,形容詞・アウオ段,命令e,*
|
146 |
+
145 形容詞,非自立,*,*,形容詞・アウオ段,命令e,難い
|
147 |
+
146 形容詞,非自立,*,*,形容詞・アウオ段,命令e,良い
|
148 |
+
147 形容詞,非自立,*,*,形容詞・アウオ段,連用ゴザイ接続,*
|
149 |
+
148 形容詞,非自立,*,*,形容詞・アウオ段,連用ゴザイ接続,難い
|
150 |
+
149 形容詞,非自立,*,*,形容詞・アウオ段,連用ゴザイ接続,良い
|
151 |
+
150 形容詞,非自立,*,*,形容詞・アウオ段,連用タ接続,*
|
152 |
+
151 形容詞,非自立,*,*,形容詞・アウオ段,連用タ接続,難い
|
153 |
+
152 形容詞,非自立,*,*,形容詞・アウオ段,連用タ接続,良い
|
154 |
+
153 形容詞,非自立,*,*,形容詞・アウオ段,連用テ接続,*
|
155 |
+
154 形容詞,非自立,*,*,形容詞・アウオ段,連用テ接続,難い
|
156 |
+
155 形容詞,非自立,*,*,形容詞・アウオ段,連用テ接続,良い
|
157 |
+
156 形容詞,非自立,*,*,形容詞・イ段,ガル接続,欲しい
|
158 |
+
157 形容詞,非自立,*,*,形容詞・イ段,仮定形,欲しい
|
159 |
+
158 形容詞,非自立,*,*,形容詞・イ段,仮定縮約1,欲しい
|
160 |
+
159 形容詞,非自立,*,*,形容詞・イ段,仮定縮約2,欲しい
|
161 |
+
160 形容詞,非自立,*,*,形容詞・イ段,基本形,欲しい
|
162 |
+
161 形容詞,非自立,*,*,形容詞・イ段,体言接続,欲しい
|
163 |
+
162 形容詞,非自立,*,*,形容詞・イ段,文語基本形,欲しい
|
164 |
+
163 形容詞,非自立,*,*,形容詞・イ段,未然ウ接続,欲しい
|
165 |
+
164 形容詞,非自立,*,*,形容詞・イ段,未然ヌ接続,欲しい
|
166 |
+
165 形容詞,非自立,*,*,形容詞・イ段,命令e,欲しい
|
167 |
+
166 形容詞,非自立,*,*,形容詞・イ段,連用ゴザイ接続,欲しい
|
168 |
+
167 形容詞,非自立,*,*,形容詞・イ段,連用タ接続,欲しい
|
169 |
+
168 形容詞,非自立,*,*,形容詞・イ段,連用テ接続,欲しい
|
170 |
+
169 助詞,格助詞,一般,*,*,*,から
|
171 |
+
170 助詞,格助詞,一般,*,*,*,が
|
172 |
+
171 助詞,格助詞,一般,*,*,*,つ
|
173 |
+
172 助詞,格助詞,一般,*,*,*,で
|
174 |
+
173 助詞,格助詞,一般,*,*,*,と
|
175 |
+
174 助詞,格助詞,一般,*,*,*,に
|
176 |
+
175 助詞,格助詞,一般,*,*,*,にて
|
177 |
+
176 助詞,格助詞,一般,*,*,*,の
|
178 |
+
177 助詞,格助詞,一般,*,*,*,へ
|
179 |
+
178 助詞,格助詞,一般,*,*,*,より
|
180 |
+
179 助詞,格助詞,一般,*,*,*,を
|
181 |
+
180 助詞,格助詞,一般,*,*,*,ん
|
182 |
+
181 助詞,格助詞,一般,*,*,*,デ
|
183 |
+
182 助詞,格助詞,一般,*,*,*,ノ
|
184 |
+
183 助詞,格助詞,一般,*,*,*,ヘ
|
185 |
+
184 助詞,格助詞,一般,*,*,*,ヲ
|
186 |
+
185 助詞,格助詞,一般,*,*,*,之
|
187 |
+
186 助詞,格助詞,引用,*,*,*,っと
|
188 |
+
187 助詞,格助詞,引用,*,*,*,と
|
189 |
+
188 助詞,格助詞,連語,*,*,*,じゃ
|
190 |
+
189 助詞,格助詞,連語,*,*,*,っちゅう
|
191 |
+
190 助詞,格助詞,連語,*,*,*,って
|
192 |
+
191 助詞,格助詞,連語,*,*,*,っていう
|
193 |
+
192 助詞,格助詞,連語,*,*,*,ってな
|
194 |
+
193 助詞,格助詞,連語,*,*,*,て
|
195 |
+
194 助詞,格助詞,連語,*,*,*,ていう
|
196 |
+
195 助詞,格助詞,連語,*,*,*,といいます
|
197 |
+
196 助詞,格助詞,連語,*,*,*,という
|
198 |
+
197 助詞,格助詞,連語,*,*,*,といった
|
199 |
+
198 助詞,格助詞,連語,*,*,*,といふ
|
200 |
+
199 助詞,格助詞,連語,*,*,*,とかいいます
|
201 |
+
200 助詞,格助詞,連語,*,*,*,とかいう
|
202 |
+
201 助詞,格助詞,連語,*,*,*,とかいふ
|
203 |
+
202 助詞,格助詞,連語,*,*,*,として
|
204 |
+
203 助詞,格助詞,連語,*,*,*,としましたら
|
205 |
+
204 助詞,格助詞,連語,*,*,*,としまして
|
206 |
+
205 助詞,格助詞,連語,*,*,*,とともに
|
207 |
+
206 助詞,格助詞,連語,*,*,*,と共に
|
208 |
+
207 助詞,格助詞,連語,*,*,*,にあたって
|
209 |
+
208 助詞,格助詞,連語,*,*,*,にあたり
|
210 |
+
209 助詞,格助詞,連語,*,*,*,にあたりまして
|
211 |
+
210 助詞,格助詞,連語,*,*,*,にあたります
|
212 |
+
211 助詞,格助詞,連語,*,*,*,にあたる
|
213 |
+
212 助詞,格助詞,連語,*,*,*,において
|
214 |
+
213 助詞,格助詞,連語,*,*,*,におきまして
|
215 |
+
214 助詞,格助詞,連語,*,*,*,における
|
216 |
+
215 助詞,格助詞,連語,*,*,*,にかけ
|
217 |
+
216 助詞,格助詞,連語,*,*,*,にかけて
|
218 |
+
217 助詞,格助詞,連語,*,*,*,にかけまして
|
219 |
+
218 助詞,格助詞,連語,*,*,*,にたいして
|
220 |
+
219 助詞,格助詞,連語,*,*,*,にたいしまして
|
221 |
+
220 助詞,格助詞,連語,*,*,*,にたいします
|
222 |
+
221 助詞,格助詞,連語,*,*,*,にたいする
|
223 |
+
222 助詞,格助詞,連語,*,*,*,について
|
224 |
+
223 助詞,格助詞,連語,*,*,*,につき
|
225 |
+
224 助詞,格助詞,連語,*,*,*,につきまして
|
226 |
+
225 助詞,格助詞,連語,*,*,*,につけ
|
227 |
+
226 助詞,格助詞,連語,*,*,*,につれ
|
228 |
+
227 助詞,格助詞,連語,*,*,*,につれて
|
229 |
+
228 助詞,格助詞,連語,*,*,*,にとって
|
230 |
+
229 助詞,格助詞,連語,*,*,*,にとり
|
231 |
+
230 助詞,格助詞,連語,*,*,*,にとりまして
|
232 |
+
231 助詞,格助詞,連語,*,*,*,にまつわります
|
233 |
+
232 助詞,格助詞,連語,*,*,*,にまつわる
|
234 |
+
233 助詞,格助詞,連語,*,*,*,によって
|
235 |
+
234 助詞,格助詞,連語,*,*,*,により
|
236 |
+
235 助詞,格助詞,連語,*,*,*,によりまして
|
237 |
+
236 助詞,格助詞,連語,*,*,*,によります
|
238 |
+
237 助詞,格助詞,連語,*,*,*,による
|
239 |
+
238 助詞,格助詞,連語,*,*,*,にわたって
|
240 |
+
239 助詞,格助詞,連語,*,*,*,にわたり
|
241 |
+
240 助詞,格助詞,連語,*,*,*,にわたりまして
|
242 |
+
241 助詞,格助詞,連語,*,*,*,にわたります
|
243 |
+
242 助詞,格助詞,連語,*,*,*,にわたる
|
244 |
+
243 助詞,格助詞,連語,*,*,*,に関し
|
245 |
+
244 助詞,格助詞,連語,*,*,*,に関して
|
246 |
+
245 助詞,格助詞,連語,*,*,*,に関しまして
|
247 |
+
246 助詞,格助詞,連語,*,*,*,に関します
|
248 |
+
247 助詞,格助詞,連語,*,*,*,に関する
|
249 |
+
248 助詞,格助詞,連語,*,*,*,に際し
|
250 |
+
249 助詞,格助詞,連語,*,*,*,に際して
|
251 |
+
250 助詞,格助詞,連語,*,*,*,に際しまして
|
252 |
+
251 助詞,格助詞,連語,*,*,*,に従い
|
253 |
+
252 助詞,格助詞,連語,*,*,*,に従いまして
|
254 |
+
253 助詞,格助詞,連語,*,*,*,に従います
|
255 |
+
254 助詞,格助詞,連語,*,*,*,に従う
|
256 |
+
255 助詞,格助詞,連語,*,*,*,に従って
|
257 |
+
256 助詞,格助詞,連語,*,*,*,に対し
|
258 |
+
257 助詞,格助詞,連語,*,*,*,に対して
|
259 |
+
258 助詞,格助詞,連語,*,*,*,に対しまして
|
260 |
+
259 助詞,格助詞,連語,*,*,*,に対します
|
261 |
+
260 助詞,格助詞,連語,*,*,*,に対する
|
262 |
+
261 助詞,格助詞,連語,*,*,*,に当たって
|
263 |
+
262 助詞,格助詞,連語,*,*,*,に当たり
|
264 |
+
263 助詞,格助詞,連語,*,*,*,に当たりまして
|
265 |
+
264 助詞,格助詞,連語,*,*,*,に当たります
|
266 |
+
265 助詞,格助詞,連語,*,*,*,に当たる
|
267 |
+
266 助詞,格助詞,連語,*,*,*,をめぐって
|
268 |
+
267 助詞,格助詞,連語,*,*,*,をめぐりまして
|
269 |
+
268 助詞,格助詞,連語,*,*,*,をめぐります
|
270 |
+
269 助詞,格助詞,連語,*,*,*,をめぐる
|
271 |
+
270 助詞,格助詞,連語,*,*,*,をもちまして
|
272 |
+
271 助詞,格助詞,連語,*,*,*,をもって
|
273 |
+
272 助詞,格助詞,連語,*,*,*,を以て
|
274 |
+
273 助詞,格助詞,連語,*,*,*,を通して
|
275 |
+
274 助詞,格助詞,連語,*,*,*,を通しまして
|
276 |
+
275 助詞,格助詞,連語,*,*,*,を通じ
|
277 |
+
276 助詞,格助詞,連語,*,*,*,を通じて
|
278 |
+
277 助詞,格助詞,連語,*,*,*,を通じまして
|
279 |
+
278 助詞,係助詞,*,*,*,*,こそ
|
280 |
+
279 助詞,係助詞,*,*,*,*,さえ
|
281 |
+
280 助詞,係助詞,*,*,*,*,しか
|
282 |
+
281 助詞,係助詞,*,*,*,*,すら
|
283 |
+
282 助詞,係助詞,*,*,*,*,ぞ
|
284 |
+
283 助詞,係助詞,*,*,*,*,っきゃ
|
285 |
+
284 助詞,係助詞,*,*,*,*,は
|
286 |
+
285 助詞,係助詞,*,*,*,*,も
|
287 |
+
286 助詞,係助詞,*,*,*,*,や
|
288 |
+
287 助詞,終助詞,*,*,*,*,かぁ
|
289 |
+
288 助詞,終助詞,*,*,*,*,かい
|
290 |
+
289 助詞,終助詞,*,*,*,*,かしら
|
291 |
+
290 助詞,終助詞,*,*,*,*,け
|
292 |
+
291 助詞,終助詞,*,*,*,*,さ
|
293 |
+
292 助詞,終助詞,*,*,*,*,ぜ
|
294 |
+
293 助詞,終助詞,*,*,*,*,ぞ
|
295 |
+
294 助詞,終助詞,*,*,*,*,だって
|
296 |
+
295 助詞,終助詞,*,*,*,*,っけ
|
297 |
+
296 助詞,終助詞,*,*,*,*,てん
|
298 |
+
297 助詞,終助詞,*,*,*,*,で
|
299 |
+
298 助詞,終助詞,*,*,*,*,な
|
300 |
+
299 助詞,終助詞,*,*,*,*,なー
|
301 |
+
300 助詞,終助詞,*,*,*,*,なぁー
|
302 |
+
301 助詞,終助詞,*,*,*,*,なァ
|
303 |
+
302 助詞,終助詞,*,*,*,*,ね
|
304 |
+
303 助詞,終助詞,*,*,*,*,ねー
|
305 |
+
304 助詞,終助詞,*,*,*,*,ねん
|
306 |
+
305 助詞,終助詞,*,*,*,*,の
|
307 |
+
306 助詞,終助詞,*,*,*,*,のう
|
308 |
+
307 助詞,終助詞,*,*,*,*,べ
|
309 |
+
308 助詞,終助詞,*,*,*,*,もん
|
310 |
+
309 助詞,終助詞,*,*,*,*,や
|
311 |
+
310 助詞,終助詞,*,*,*,*,やら
|
312 |
+
311 助詞,終助詞,*,*,*,*,よ
|
313 |
+
312 助詞,終助詞,*,*,*,*,よー
|
314 |
+
313 助詞,終助詞,*,*,*,*,よう
|
315 |
+
314 助詞,終助詞,*,*,*,*,わ
|
316 |
+
315 助詞,終助詞,*,*,*,*,わい
|
317 |
+
316 助詞,終助詞,*,*,*,*,ん
|
318 |
+
317 助詞,終助詞,*,*,*,*,ヨー
|
319 |
+
318 助詞,終助詞,*,*,*,*,ワ
|
320 |
+
319 助詞,接続助詞,*,*,*,*,および
|
321 |
+
320 助詞,接続助詞,*,*,*,*,から
|
322 |
+
321 助詞,接続助詞,*,*,*,*,からには
|
323 |
+
322 助詞,接続助詞,*,*,*,*,が
|
324 |
+
323 助詞,接続助詞,*,*,*,*,けども
|
325 |
+
324 助詞,接続助詞,*,*,*,*,けれど
|
326 |
+
325 助詞,接続助詞,*,*,*,*,けれども
|
327 |
+
326 助詞,接続助詞,*,*,*,*,さかい
|
328 |
+
327 助詞,接続助詞,*,*,*,*,し
|
329 |
+
328 助詞,接続助詞,*,*,*,*,たって
|
330 |
+
329 助詞,接続助詞,*,*,*,*,つつ
|
331 |
+
330 助詞,接続助詞,*,*,*,*,て
|
332 |
+
331 助詞,接続助詞,*,*,*,*,で
|
333 |
+
332 助詞,接続助詞,*,*,*,*,と
|
334 |
+
333 助詞,接続助詞,*,*,*,*,とも
|
335 |
+
334 助詞,接続助詞,*,*,*,*,ど
|
336 |
+
335 助詞,接続助詞,*,*,*,*,どころか
|
337 |
+
336 助詞,接続助詞,*,*,*,*,ども
|
338 |
+
337 助詞,接続助詞,*,*,*,*,ながら
|
339 |
+
338 助詞,接続助詞,*,*,*,*,なり
|
340 |
+
339 助詞,接続助詞,*,*,*,*,ので
|
341 |
+
340 助詞,接続助詞,*,*,*,*,のに
|
342 |
+
341 助詞,接続助詞,*,*,*,*,ば
|
343 |
+
342 助詞,接続助詞,*,*,*,*,ものの
|
344 |
+
343 助詞,接続助詞,*,*,*,*,や
|
345 |
+
344 助詞,接続助詞,*,*,*,*,やいなや
|
346 |
+
345 助詞,接続助詞,*,*,*,*,や否や
|
347 |
+
346 助詞,接続助詞,*,*,*,*,んで
|
348 |
+
347 助詞,特殊,*,*,*,*,かな
|
349 |
+
348 助詞,特殊,*,*,*,*,けむ
|
350 |
+
349 助詞,特殊,*,*,*,*,に
|
351 |
+
350 助詞,特殊,*,*,*,*,にゃ
|
352 |
+
351 助詞,特殊,*,*,*,*,ん
|
353 |
+
352 助詞,副詞化,*,*,*,*,と
|
354 |
+
353 助詞,副詞化,*,*,*,*,に
|
355 |
+
354 助詞,副助詞,*,*,*,*,かも
|
356 |
+
355 助詞,副助詞,*,*,*,*,くらい
|
357 |
+
356 助詞,副助詞,*,*,*,*,ぐらい
|
358 |
+
357 助詞,副助詞,*,*,*,*,しも
|
359 |
+
358 助詞,副助詞,*,*,*,*,じゃ
|
360 |
+
359 助詞,副助詞,*,*,*,*,じゃあ
|
361 |
+
360 助詞,副助詞,*,*,*,*,じゃァ
|
362 |
+
361 助詞,副助詞,*,*,*,*,ずつ
|
363 |
+
362 助詞,副助詞,*,*,*,*,だけ
|
364 |
+
363 助詞,副助詞,*,*,*,*,だって
|
365 |
+
364 助詞,副助詞,*,*,*,*,だに
|
366 |
+
365 助詞,副助詞,*,*,*,*,でも
|
367 |
+
366 助詞,副助詞,*,*,*,*,とも
|
368 |
+
367 助詞,副助詞,*,*,*,*,なぞ
|
369 |
+
368 助詞,副助詞,*,*,*,*,など
|
370 |
+
369 助詞,副助詞,*,*,*,*,なり
|
371 |
+
370 助詞,副助詞,*,*,*,*,なんか
|
372 |
+
371 助詞,副助詞,*,*,*,*,なんぞ
|
373 |
+
372 助詞,副助詞,*,*,*,*,なんて
|
374 |
+
373 助詞,副助詞,*,*,*,*,のみ
|
375 |
+
374 助詞,副助詞,*,*,*,*,ばかし
|
376 |
+
375 助詞,副助詞,*,*,*,*,ばかり
|
377 |
+
376 助詞,副助詞,*,*,*,*,ばっか
|
378 |
+
377 助詞,副助詞,*,*,*,*,ばっかり
|
379 |
+
378 助詞,副助詞,*,*,*,*,ほど
|
380 |
+
379 助詞,副助詞,*,*,*,*,まで
|
381 |
+
380 助詞,副助詞,*,*,*,*,やら
|
382 |
+
381 助詞,副助詞,*,*,*,*,程
|
383 |
+
382 助詞,副助詞,*,*,*,*,迄
|
384 |
+
383 助詞,副助詞/並立助詞/終助詞,*,*,*,*,か
|
385 |
+
384 助詞,並立助詞,*,*,*,*,たり
|
386 |
+
385 助詞,並立助詞,*,*,*,*,だの
|
387 |
+
386 助詞,並立助詞,*,*,*,*,だり
|
388 |
+
387 助詞,並立助詞,*,*,*,*,と
|
389 |
+
388 助詞,並立助詞,*,*,*,*,とか
|
390 |
+
389 助詞,並立助詞,*,*,*,*,なり
|
391 |
+
390 助詞,並立助詞,*,*,*,*,や
|
392 |
+
391 助詞,並立助詞,*,*,*,*,やら
|
393 |
+
392 助詞,連体化,*,*,*,*,の
|
394 |
+
393 助詞,連体化,*,*,*,*,ノ
|
395 |
+
394 助動詞,*,*,*,下二・タ行,仮定形,つ
|
396 |
+
395 助動詞,*,*,*,下二・タ行,基本形,つ
|
397 |
+
396 助動詞,*,*,*,下二・タ行,体言接続,つ
|
398 |
+
397 助動詞,*,*,*,下二・タ行,未然形,つ
|
399 |
+
398 助動詞,*,*,*,下二・タ行,命令yo,つ
|
400 |
+
399 助動詞,*,*,*,下二・タ行,連用形,つ
|
401 |
+
400 助動詞,*,*,*,形容詞・イ段,ガル接続,らしい
|
402 |
+
401 助動詞,*,*,*,形容詞・イ段,ガル接続,無い
|
403 |
+
402 助動詞,*,*,*,形容詞・イ段,仮定形,らしい
|
404 |
+
403 助動詞,*,*,*,形容詞・イ段,仮定形,無い
|
405 |
+
404 助動詞,*,*,*,形容詞・イ段,仮定縮約1,らしい
|
406 |
+
405 助動詞,*,*,*,形容詞・イ段,仮定縮約1,無い
|
407 |
+
406 助動詞,*,*,*,形容詞・イ段,仮定縮約2,らしい
|
408 |
+
407 助動詞,*,*,*,形容詞・イ段,仮定縮約2,無い
|
409 |
+
408 助動詞,*,*,*,形容詞・イ段,基本形,らしい
|
410 |
+
409 助動詞,*,*,*,形容詞・イ段,基本形,無い
|
411 |
+
410 助動詞,*,*,*,形容詞・イ段,体言接続,らしい
|
412 |
+
411 助動詞,*,*,*,形容詞・イ段,体言接続,無い
|
413 |
+
412 助動詞,*,*,*,形容詞・イ段,文語基本形,らしい
|
414 |
+
413 助動詞,*,*,*,形容詞・イ段,文語基本形,無い
|
415 |
+
414 助動詞,*,*,*,形容詞・イ段,未然ウ接続,らしい
|
416 |
+
415 助動詞,*,*,*,形容詞・イ段,未然ウ接続,無い
|
417 |
+
416 助動詞,*,*,*,形容詞・イ段,未然ヌ接続,らしい
|
418 |
+
417 助動詞,*,*,*,形容詞・イ段,未然ヌ接続,無い
|
419 |
+
418 助動詞,*,*,*,形容詞・イ段,命令e,らしい
|
420 |
+
419 助動詞,*,*,*,形容詞・イ段,命令e,無い
|
421 |
+
420 助動詞,*,*,*,形容詞・イ段,連用ゴザイ接続,らしい
|
422 |
+
421 助動詞,*,*,*,形容詞・イ段,連用ゴザイ接続,無い
|
423 |
+
422 助動詞,*,*,*,形容詞・イ段,連用タ接続,らしい
|
424 |
+
423 助動詞,*,*,*,形容詞・イ段,連用タ接続,無い
|
425 |
+
424 助動詞,*,*,*,形容詞・イ段,連用テ接続,らしい
|
426 |
+
425 助動詞,*,*,*,形容詞・イ段,連用テ接続,無い
|
427 |
+
426 助動詞,*,*,*,五段・ラ行アル,仮定形,ある
|
428 |
+
427 助動詞,*,*,*,五段・ラ行アル,仮定縮約1,ある
|
429 |
+
428 助動詞,*,*,*,五段・ラ行アル,基本形,ある
|
430 |
+
429 助動詞,*,*,*,五段・ラ行アル,体言接続特殊,ある
|
431 |
+
430 助動詞,*,*,*,五段・ラ行アル,未然ウ接続,ある
|
432 |
+
431 助動詞,*,*,*,五段・ラ行アル,未然形,ある
|
433 |
+
432 助動詞,*,*,*,五段・ラ行アル,命令e,ある
|
434 |
+
433 助動詞,*,*,*,五段・ラ行アル,連用タ接続,ある
|
435 |
+
434 助動詞,*,*,*,五段・ラ行アル,連用形,ある
|
436 |
+
435 助動詞,*,*,*,五段・ラ行特殊,仮定形,ござる
|
437 |
+
436 助動詞,*,*,*,五段・ラ行特殊,仮定形,御座る
|
438 |
+
437 助動詞,*,*,*,五段・ラ行特殊,仮定縮約1,ござる
|
439 |
+
438 助動詞,*,*,*,五段・ラ行特殊,仮定縮約1,御座る
|
440 |
+
439 助動詞,*,*,*,五段・ラ行特殊,基本形,ござる
|
441 |
+
440 助動詞,*,*,*,五段・ラ行特殊,基本形,御座る
|
442 |
+
441 助動詞,*,*,*,五段・ラ行特殊,未然ウ接続,ござる
|
443 |
+
442 助動詞,*,*,*,五段・ラ行特殊,未然ウ接続,御座る
|
444 |
+
443 助動詞,*,*,*,五段・ラ行特殊,未然形,ござる
|
445 |
+
444 助動詞,*,*,*,五段・ラ行特殊,未然形,御座る
|
446 |
+
445 助動詞,*,*,*,五段・ラ行特殊,未然特殊,ござる
|
447 |
+
446 助動詞,*,*,*,五段・ラ行特殊,未然特殊,御座る
|
448 |
+
447 助動詞,*,*,*,五段・ラ行特殊,命令e,ござる
|
449 |
+
448 助動詞,*,*,*,五段・ラ行特殊,命令e,御座る
|
450 |
+
449 助動詞,*,*,*,五段・ラ行特殊,命令i,ござる
|
451 |
+
450 助動詞,*,*,*,五段・ラ行特殊,命令i,御座る
|
452 |
+
451 助動詞,*,*,*,五段・ラ行特殊,連用タ接続,ござる
|
453 |
+
452 助動詞,*,*,*,五段・ラ行特殊,連用タ接続,御座る
|
454 |
+
453 助動詞,*,*,*,五段・ラ行特殊,連用形,ござる
|
455 |
+
454 助動詞,*,*,*,五段・ラ行特殊,連用形,御座る
|
456 |
+
455 助動詞,*,*,*,特殊・ジャ,基本形,じゃ
|
457 |
+
456 助動詞,*,*,*,特殊・ジャ,未然形,じゃ
|
458 |
+
457 助動詞,*,*,*,特殊・ジャ,連用形,じゃ
|
459 |
+
458 助動詞,*,*,*,特殊・タ,仮定形,た
|
460 |
+
459 助動詞,*,*,*,特殊・タ,仮定形,だ
|
461 |
+
460 助動詞,*,*,*,特殊・タ,基本形,た
|
462 |
+
461 助動詞,*,*,*,特殊・タ,基本形,だ
|
463 |
+
462 助動詞,*,*,*,特殊・タ,未然形,た
|
464 |
+
463 助動詞,*,*,*,特殊・タ,未然形,だ
|
465 |
+
464 助動詞,*,*,*,特殊・タイ,ガル接続,たい
|
466 |
+
465 助動詞,*,*,*,特殊・タイ,音便基本形,たい
|
467 |
+
466 助動詞,*,*,*,特殊・タイ,仮定形,たい
|
468 |
+
467 助動詞,*,*,*,特殊・タイ,仮定縮約1,たい
|
469 |
+
468 助動詞,*,*,*,特殊・タイ,仮定縮約2,たい
|
470 |
+
469 助動詞,*,*,*,特殊・タイ,基本形,たい
|
471 |
+
470 助動詞,*,*,*,特殊・タイ,体言接続,たい
|
472 |
+
471 助動詞,*,*,*,特殊・タイ,文語基本形,たい
|
473 |
+
472 助動詞,*,*,*,特殊・タイ,未然ウ接続,たい
|
474 |
+
473 助動詞,*,*,*,特殊・タイ,未然ヌ接続,たい
|
475 |
+
474 助動詞,*,*,*,特殊・タイ,連用ゴザイ接続,たい
|
476 |
+
475 助動詞,*,*,*,特殊・タイ,連用タ接続,たい
|
477 |
+
476 助動詞,*,*,*,特殊・タイ,連用テ接続,たい
|
478 |
+
477 助動詞,*,*,*,特殊・ダ,仮定形,だ
|
479 |
+
478 助動詞,*,*,*,特殊・ダ,基本形,だ
|
480 |
+
479 助動詞,*,*,*,特殊・ダ,体言接続,だ
|
481 |
+
480 助動詞,*,*,*,特殊・ダ,未然形,だ
|
482 |
+
481 助動詞,*,*,*,特殊・ダ,命令e,だ
|
483 |
+
482 助動詞,*,*,*,特殊・ダ,連用タ接続,だ
|
484 |
+
483 助動詞,*,*,*,特殊・ダ,連用形,だ
|
485 |
+
484 助動詞,*,*,*,特殊・デス,基本形,っす
|
486 |
+
485 助動詞,*,*,*,特殊・デス,基本形,です
|
487 |
+
486 助動詞,*,*,*,特殊・デス,基本形,どす
|
488 |
+
487 助動詞,*,*,*,特殊・デス,未然形,っす
|
489 |
+
488 助動詞,*,*,*,特殊・デス,未然形,です
|
490 |
+
489 助動詞,*,*,*,特殊・デス,未然形,どす
|
491 |
+
490 助動詞,*,*,*,特殊・デス,連用形,っす
|
492 |
+
491 助動詞,*,*,*,特殊・デス,連用形,です
|
493 |
+
492 助動詞,*,*,*,特殊・デス,連用形,どす
|
494 |
+
493 助動詞,*,*,*,特殊・ナイ,ガル接続,無い
|
495 |
+
494 助動詞,*,*,*,特殊・ナイ,音便基本形,無い
|
496 |
+
495 助動詞,*,*,*,特殊・ナイ,仮定形,無い
|
497 |
+
496 助動詞,*,*,*,特殊・ナイ,仮定縮約1,無い
|
498 |
+
497 助動詞,*,*,*,特殊・ナイ,仮定縮約2,無い
|
499 |
+
498 助動詞,*,*,*,特殊・ナイ,基本形,無い
|
500 |
+
499 助動詞,*,*,*,特殊・ナイ,体言接続,無い
|
501 |
+
500 助動詞,*,*,*,特殊・ナイ,文語基本形,無い
|
502 |
+
501 助動詞,*,*,*,特殊・ナイ,未然ウ接続,無い
|
503 |
+
502 助動詞,*,*,*,特殊・ナイ,未然ヌ接続,無い
|
504 |
+
503 助動詞,*,*,*,特殊・ナイ,命令e,無い
|
505 |
+
504 助動詞,*,*,*,特殊・ナイ,連用ゴザイ接続,無い
|
506 |
+
505 助動詞,*,*,*,特殊・ナイ,連用タ接続,無い
|
507 |
+
506 助動詞,*,*,*,特殊・ナイ,連用テ接続,無い
|
508 |
+
507 助動詞,*,*,*,特殊・ナイ,連用デ接続,無い
|
509 |
+
508 助動詞,*,*,*,特殊・ヌ,仮定形,ぬ
|
510 |
+
509 助動詞,*,*,*,特殊・ヌ,基本形,ぬ
|
511 |
+
510 助動詞,*,*,*,特殊・ヌ,体言接続,ぬ
|
512 |
+
511 助動詞,*,*,*,特殊・ヌ,文語基本形,ぬ
|
513 |
+
512 助動詞,*,*,*,特殊・ヌ,連用ニ接続,ぬ
|
514 |
+
513 助動詞,*,*,*,特殊・ヌ,連用形,ぬ
|
515 |
+
514 助動詞,*,*,*,特殊・マス,仮定形,ます
|
516 |
+
515 助動詞,*,*,*,特殊・マス,仮定形,やす
|
517 |
+
516 助動詞,*,*,*,特殊・マス,基本形,ます
|
518 |
+
517 助動詞,*,*,*,特殊・マス,基本形,やす
|
519 |
+
518 助動詞,*,*,*,特殊・マス,未然ウ接続,ます
|
520 |
+
519 助動詞,*,*,*,特殊・マス,未然ウ接続,やす
|
521 |
+
520 助動詞,*,*,*,特殊・マス,未然形,ます
|
522 |
+
521 助動詞,*,*,*,特殊・マス,未然形,やす
|
523 |
+
522 助動詞,*,*,*,特殊・マス,命令e,ます
|
524 |
+
523 助動詞,*,*,*,特殊・マス,命令e,やす
|
525 |
+
524 助動詞,*,*,*,特殊・マス,命令i,ます
|
526 |
+
525 助動詞,*,*,*,特殊・マス,命令i,やす
|
527 |
+
526 助動詞,*,*,*,特殊・マス,連用形,ます
|
528 |
+
527 助動詞,*,*,*,特殊・マス,連用形,やす
|
529 |
+
528 助動詞,*,*,*,特殊・ヤ,基本形,や
|
530 |
+
529 助動詞,*,*,*,特殊・ヤ,未然形,や
|
531 |
+
530 助動詞,*,*,*,特殊・ヤ,連用形,や
|
532 |
+
531 助動詞,*,*,*,不変化型,基本形,う
|
533 |
+
532 助動詞,*,*,*,不変化型,基本形,じ
|
534 |
+
533 助動詞,*,*,*,不変化型,基本形,じゃん
|
535 |
+
534 助動詞,*,*,*,不変化型,基本形,じゃン
|
536 |
+
535 助動詞,*,*,*,不変化型,基本形,ぬ
|
537 |
+
536 助動詞,*,*,*,不変化型,基本形,ひん
|
538 |
+
537 助動詞,*,*,*,不変化型,基本形,へん
|
539 |
+
538 助動詞,*,*,*,不変化型,基本形,まい
|
540 |
+
539 助動詞,*,*,*,不変化型,基本形,やん
|
541 |
+
540 助動詞,*,*,*,不変化型,基本形,ん
|
542 |
+
541 助動詞,*,*,*,文語・キ,基本形,き
|
543 |
+
542 助動詞,*,*,*,文語・キ,体言接続,き
|
544 |
+
543 助動詞,*,*,*,文語・キ,命令e,き
|
545 |
+
544 助動詞,*,*,*,文語・ケリ,基本形,けり
|
546 |
+
545 助動詞,*,*,*,文語・ケリ,体言接続,けり
|
547 |
+
546 助動詞,*,*,*,文語・ゴトシ,基本形,ごとし
|
548 |
+
547 助動詞,*,*,*,文語・ゴトシ,基本形,如し
|
549 |
+
548 助動詞,*,*,*,文語・ゴトシ,体言接続,ごとし
|
550 |
+
549 助動詞,*,*,*,文語・ゴトシ,体言接続,如し
|
551 |
+
550 助動詞,*,*,*,文語・ゴトシ,連用形,ごとし
|
552 |
+
551 助動詞,*,*,*,文語・ゴトシ,連用形,如し
|
553 |
+
552 助動詞,*,*,*,文語・ナリ,仮定形,たり
|
554 |
+
553 助動詞,*,*,*,文語・ナリ,仮定形,なり
|
555 |
+
554 助動詞,*,*,*,文語・ナリ,基本形,たり
|
556 |
+
555 助動詞,*,*,*,文語・ナリ,基本形,なり
|
557 |
+
556 助動詞,*,*,*,文語・ナリ,体言接続,たり
|
558 |
+
557 助動詞,*,*,*,文語・ナリ,体言接続,なり
|
559 |
+
558 助動詞,*,*,*,文語・ナリ,未然形,たり
|
560 |
+
559 助動詞,*,*,*,文語・ナリ,未然形,なり
|
561 |
+
560 助動詞,*,*,*,文語・ナリ,命令e,たり
|
562 |
+
561 助動詞,*,*,*,文語・ナリ,命令e,なり
|
563 |
+
562 助動詞,*,*,*,文語・ベシ,仮定形,べし
|
564 |
+
563 助動詞,*,*,*,��語・ベシ,基本形,べし
|
565 |
+
564 助動詞,*,*,*,文語・ベシ,体言接続,べし
|
566 |
+
565 助動詞,*,*,*,文語・ベシ,未然形,べし
|
567 |
+
566 助動詞,*,*,*,文語・ベシ,連用形,べし
|
568 |
+
567 助動詞,*,*,*,文語・マジ,仮定形,まじ
|
569 |
+
568 助動詞,*,*,*,文語・マジ,基本形,まじ
|
570 |
+
569 助動詞,*,*,*,文語・マジ,体言接続,まじ
|
571 |
+
570 助動詞,*,*,*,文語・マジ,連用形,まじ
|
572 |
+
571 助動詞,*,*,*,文語・リ,基本形,り
|
573 |
+
572 助動詞,*,*,*,文語・リ,体言接続,り
|
574 |
+
573 助動詞,*,*,*,文語・ル,仮定形,る
|
575 |
+
574 助動詞,*,*,*,文語・ル,基本形,る
|
576 |
+
575 助動詞,*,*,*,文語・ル,体言接続,る
|
577 |
+
576 助動詞,*,*,*,文語・ル,未然形,る
|
578 |
+
577 助動詞,*,*,*,文語・ル,命令e,る
|
579 |
+
578 助動詞,*,*,*,文語・ル,命令yo,る
|
580 |
+
579 助動詞,*,*,*,文語・ル,連用形,る
|
581 |
+
580 接続詞,*,*,*,*,*,*
|
582 |
+
581 接続詞,*,*,*,*,*,および
|
583 |
+
582 接頭詞,形容詞接続,*,*,*,*,*
|
584 |
+
583 接頭詞,数接続,*,*,*,*,*
|
585 |
+
584 接頭詞,動詞接続,*,*,*,*,*
|
586 |
+
585 接頭詞,名詞接続,*,*,*,*,*
|
587 |
+
586 動詞,自立,*,*,カ変・クル,仮定形,*
|
588 |
+
587 動詞,自立,*,*,カ変・クル,仮定縮約1,*
|
589 |
+
588 動詞,自立,*,*,カ変・クル,基本形,*
|
590 |
+
589 動詞,自立,*,*,カ変・クル,体言接続特殊,*
|
591 |
+
590 動詞,自立,*,*,カ変・クル,体言接続特殊2,*
|
592 |
+
591 動詞,自立,*,*,カ変・クル,未然ウ接続,*
|
593 |
+
592 動詞,自立,*,*,カ変・クル,未然形,*
|
594 |
+
593 動詞,自立,*,*,カ変・クル,命令i,*
|
595 |
+
594 動詞,自立,*,*,カ変・クル,命令yo,*
|
596 |
+
595 動詞,自立,*,*,カ変・クル,連用形,*
|
597 |
+
596 動詞,自立,*,*,カ変・来ル,仮定形,*
|
598 |
+
597 動詞,自立,*,*,カ変・来ル,仮定縮約1,*
|
599 |
+
598 動詞,自立,*,*,カ変・来ル,基本形,*
|
600 |
+
599 動詞,自立,*,*,カ変・来ル,体言接続特殊,*
|
601 |
+
600 動詞,自立,*,*,カ変・来ル,体言接続特殊2,*
|
602 |
+
601 動詞,自立,*,*,カ変・来ル,未然ウ接続,*
|
603 |
+
602 動詞,自立,*,*,カ変・来ル,未然形,*
|
604 |
+
603 動詞,自立,*,*,カ変・来ル,命令i,*
|
605 |
+
604 動詞,自立,*,*,カ変・来ル,命令yo,*
|
606 |
+
605 動詞,自立,*,*,カ変・来ル,連用形,*
|
607 |
+
606 動詞,自立,*,*,サ変・−スル,仮定形,*
|
608 |
+
607 動詞,自立,*,*,サ変・−スル,仮定縮約1,*
|
609 |
+
608 動詞,自立,*,*,サ変・−スル,基本形,*
|
610 |
+
609 動詞,自立,*,*,サ変・−スル,文語基本形,*
|
611 |
+
610 動詞,自立,*,*,サ変・−スル,未然ウ接続,*
|
612 |
+
611 動詞,自立,*,*,サ変・−スル,未然レル接続,*
|
613 |
+
612 動詞,自立,*,*,サ変・−スル,未然形,*
|
614 |
+
613 動詞,自立,*,*,サ変・−スル,命令ro,*
|
615 |
+
614 動詞,自立,*,*,サ変・−スル,命令yo,*
|
616 |
+
615 動詞,自立,*,*,サ変・−ズル,仮定形,*
|
617 |
+
616 動詞,自立,*,*,サ変・−ズル,仮定縮約1,*
|
618 |
+
617 動詞,自立,*,*,サ変・−ズル,基本形,*
|
619 |
+
618 動詞,自立,*,*,サ変・−ズル,文語基本形,*
|
620 |
+
619 動詞,自立,*,*,サ変・−ズル,未然ウ接続,*
|
621 |
+
620 動詞,自立,*,*,サ変・−ズル,未然形,*
|
622 |
+
621 動詞,自立,*,*,サ変・−ズル,命令yo,*
|
623 |
+
622 動詞,自立,*,*,サ変・スル,仮定形,する
|
624 |
+
623 動詞,自立,*,*,サ変・スル,仮定縮約1,する
|
625 |
+
624 動詞,自立,*,*,サ変・スル,基本形,する
|
626 |
+
625 動詞,自立,*,*,サ変・スル,体言接続特殊,する
|
627 |
+
626 動詞,自立,*,*,サ変・スル,体言接続特殊2,する
|
628 |
+
627 動詞,自立,*,*,サ変・スル,文語基本形,する
|
629 |
+
628 動詞,自立,*,*,サ変・スル,未然ウ接続,する
|
630 |
+
629 動詞,自立,*,*,サ変・スル,未然ヌ接続,する
|
631 |
+
630 動詞,自立,*,*,サ変・スル,未然レル接続,する
|
632 |
+
631 動詞,自立,*,*,サ変・スル,未然形,する
|
633 |
+
632 動詞,自立,*,*,サ変・スル,命令i,する
|
634 |
+
633 動詞,自立,*,*,サ変・スル,命令ro,する
|
635 |
+
634 動詞,自立,*,*,サ変・スル,命令yo,する
|
636 |
+
635 動詞,自立,*,*,サ変・スル,連用形,する
|
637 |
+
636 動詞,自立,*,*,ラ変,仮定形,*
|
638 |
+
637 動詞,自立,*,*,ラ変,基本形,*
|
639 |
+
638 動詞,自立,*,*,ラ変,体言接続,*
|
640 |
+
639 動詞,自立,*,*,ラ変,未然形,*
|
641 |
+
640 動詞,自立,*,*,ラ変,命令e,*
|
642 |
+
641 動詞,自立,*,*,ラ変,連用形,*
|
643 |
+
642 動詞,自立,*,*,一段,*,*
|
644 |
+
643 動詞,自立,*,*,一段,仮定形,*
|
645 |
+
644 動詞,自立,*,*,一段,仮定縮約1,*
|
646 |
+
645 動詞,自立,*,*,一段,基本形,*
|
647 |
+
646 動詞,自立,*,*,一段,基本形-促音便,*
|
648 |
+
647 動詞,自立,*,*,一段,体言接続特殊,*
|
649 |
+
648 動詞,自立,*,*,一段,未然ウ接続,*
|
650 |
+
649 動詞,自立,*,*,一段,未然形,*
|
651 |
+
650 動詞,自立,*,*,一段,命令ro,*
|
652 |
+
651 動詞,自立,*,*,一段,命令yo,*
|
653 |
+
652 動詞,自立,*,*,一段,連用形,*
|
654 |
+
653 動詞,自立,*,*,一段・クレル,仮定形,*
|
655 |
+
654 動詞,自立,*,*,一段・クレル,仮定縮約1,*
|
656 |
+
655 動詞,自立,*,*,一段・クレル,基本形,*
|
657 |
+
656 動詞,自立,*,*,一段・クレル,未然ウ接続,*
|
658 |
+
657 動詞,自立,*,*,一段・クレル,未然形,*
|
659 |
+
658 動詞,自立,*,*,一段・クレル,未然特殊,*
|
660 |
+
659 動詞,自立,*,*,一段・クレル,命令e,*
|
661 |
+
660 動詞,自立,*,*,一段・クレル,命令ro,*
|
662 |
+
661 動詞,自立,*,*,一段・クレル,命令yo,*
|
663 |
+
662 動詞,自立,*,*,一段・クレル,連用形,*
|
664 |
+
663 動詞,自立,*,*,一段・得ル,仮定形,*
|
665 |
+
664 動詞,自立,*,*,一段・得ル,基本形,*
|
666 |
+
665 動詞,自立,*,*,下二・カ行,仮定形,*
|
667 |
+
666 動詞,自立,*,*,下二・カ行,基本形,*
|
668 |
+
667 動詞,自立,*,*,下二・カ行,体言接続,*
|
669 |
+
668 動詞,自立,*,*,下二・カ行,未然形,*
|
670 |
+
669 動詞,自立,*,*,下二・カ行,命令yo,*
|
671 |
+
670 動詞,自立,*,*,下二・カ行,連用形,*
|
672 |
+
671 動詞,自立,*,*,下二・ガ行,仮定形,*
|
673 |
+
672 動詞,自立,*,*,下二・ガ行,基本形,*
|
674 |
+
673 動詞,自立,*,*,下二・ガ行,体言接続,*
|
675 |
+
674 動詞,自立,*,*,下二・ガ行,未然形,*
|
676 |
+
675 動詞,自立,*,*,下二・ガ行,命令yo,*
|
677 |
+
676 動詞,自立,*,*,下二・ガ行,連用形,*
|
678 |
+
677 動詞,自立,*,*,下二・ダ行,仮定形,*
|
679 |
+
678 動詞,自立,*,*,下二・ダ行,基本形,*
|
680 |
+
679 動詞,自立,*,*,下二・ダ行,体言接続,*
|
681 |
+
680 動詞,自立,*,*,下二・ダ行,未然形,*
|
682 |
+
681 動詞,自立,*,*,下二・ダ行,命令yo,*
|
683 |
+
682 動詞,自立,*,*,下二・ダ行,連用形,*
|
684 |
+
683 動詞,自立,*,*,下二・ハ行,仮定形,*
|
685 |
+
684 動詞,自立,*,*,下二・ハ行,基本形,*
|
686 |
+
685 動詞,自立,*,*,下二・ハ行,体言接続,*
|
687 |
+
686 動詞,自立,*,*,下二・ハ行,未然形,*
|
688 |
+
687 動詞,自立,*,*,下二・ハ行,命令yo,*
|
689 |
+
688 動詞,自立,*,*,下二・ハ行,連用形,*
|
690 |
+
689 動詞,自立,*,*,下二・マ行,仮定形,*
|
691 |
+
690 動詞,自立,*,*,下二・マ行,基本形,*
|
692 |
+
691 動詞,自立,*,*,下二・マ行,体言接続,*
|
693 |
+
692 動詞,自立,*,*,下二・マ行,未然形,*
|
694 |
+
693 動詞,自立,*,*,下二・マ行,命令yo,*
|
695 |
+
694 動詞,自立,*,*,下二・マ行,連用形,*
|
696 |
+
695 動詞,自立,*,*,下二・得,仮定形,*
|
697 |
+
696 動詞,自立,*,*,下二・得,基本形,*
|
698 |
+
697 動詞,自立,*,*,下二・得,体言接続,*
|
699 |
+
698 動詞,自立,*,*,下二・得,未然ウ接続,*
|
700 |
+
699 動詞,自立,*,*,下二・得,未然形,*
|
701 |
+
700 動詞,自立,*,*,下二・得,命令yo,*
|
702 |
+
701 動詞,自立,*,*,下二・得,連用形,*
|
703 |
+
702 動詞,自立,*,*,五段・カ行イ音便,*,*
|
704 |
+
703 動詞,自立,*,*,五段・カ行イ音便,仮定形,*
|
705 |
+
704 動詞,自立,*,*,五段・カ行イ音便,仮定形,行く
|
706 |
+
705 動詞,自立,*,*,五段・カ行イ音便,仮定縮約1,*
|
707 |
+
706 動詞,自立,*,*,五段・カ行イ音便,仮定縮約1,行く
|
708 |
+
707 動詞,自立,*,*,五段・カ行イ音便,基本形,*
|
709 |
+
708 動詞,自立,*,*,五段・カ行イ音便,基本形,行く
|
710 |
+
709 動詞,自立,*,*,五段・カ行イ音便,未然ウ接続,*
|
711 |
+
710 動詞,自立,*,*,五段・カ行イ音便,未然ウ接続,行く
|
712 |
+
711 動詞,自立,*,*,五段・カ行イ音便,未然形,*
|
713 |
+
712 動詞,自立,*,*,五段・カ行イ音便,未然形,行く
|
714 |
+
713 動詞,自立,*,*,五段・カ行イ音便,命令e,*
|
715 |
+
714 動詞,自立,*,*,五段・カ行イ音便,命令e,行く
|
716 |
+
715 動詞,自立,*,*,五段・カ行イ音便,連用タ接続,*
|
717 |
+
716 動詞,自立,*,*,五段・カ行イ音便,連用タ接続,行く
|
718 |
+
717 動詞,自立,*,*,五段・カ行イ音便,連用形,*
|
719 |
+
718 動詞,自立,*,*,五段・カ行イ音便,連用形,行く
|
720 |
+
719 動詞,自立,*,*,五段・カ行促音便,仮定形,*
|
721 |
+
720 動詞,自立,*,*,五段・カ行促音便,仮定形,行く
|
722 |
+
721 動詞,自立,*,*,五段・カ行促音便,仮定縮約1,*
|
723 |
+
722 動詞,自立,*,*,五段・カ行促音便,仮定縮約1,行く
|
724 |
+
723 動詞,自立,*,*,五段・カ行促音便,基本形,*
|
725 |
+
724 動詞,自立,*,*,五段・カ行促音便,基本形,行く
|
726 |
+
725 動詞,自立,*,*,五段・カ行促音便,未然ウ接続,*
|
727 |
+
726 動詞,自立,*,*,五段・カ行促音便,未然ウ接続,行く
|
728 |
+
727 動詞,自立,*,*,五段・カ行促音便,未然形,*
|
729 |
+
728 動詞,自立,*,*,五段・カ行促音便,未然形,行く
|
730 |
+
729 動詞,自立,*,*,五段・カ行促音便,命令e,*
|
731 |
+
730 動詞,自立,*,*,五段・カ行促音便,命令e,行く
|
732 |
+
731 動詞,自立,*,*,五段・カ行促音便,連用タ接続,*
|
733 |
+
732 動詞,自立,*,*,五段・カ行促音便,連用タ接続,行く
|
734 |
+
733 動詞,自立,*,*,五段・カ行促音便,連用形,*
|
735 |
+
734 動詞,自立,*,*,五段・カ行促音便,連用形,行く
|
736 |
+
735 動詞,自立,*,*,五段・カ行促音便ユク,仮定形,*
|
737 |
+
736 動詞,自立,*,*,五段・カ行促音便ユク,仮定形,行く
|
738 |
+
737 動詞,自立,*,*,五段・カ行促音便ユク,仮定縮約1,*
|
739 |
+
738 動詞,自立,*,*,五段・カ行促音便ユク,仮定縮約1,行く
|
740 |
+
739 動詞,自立,*,*,五段・カ行促音便ユク,基本形,*
|
741 |
+
740 動詞,自立,*,*,五段・カ行促音便ユク,基本形,行く
|
742 |
+
741 動詞,自立,*,*,五段・カ行促音便ユク,未然ウ接続,*
|
743 |
+
742 動詞,自立,*,*,五段・カ行促音便ユク,未然ウ接続,行く
|
744 |
+
743 動詞,自立,*,*,五段・カ行促音便ユク,未然形,*
|
745 |
+
744 動詞,自立,*,*,五段・カ行促音便ユク,未然形,行く
|
746 |
+
745 動詞,自立,*,*,五段・カ行促音便ユク,命令e,*
|
747 |
+
746 動詞,自立,*,*,五段・カ行促音便ユク,命令e,行く
|
748 |
+
747 動詞,自立,*,*,五段・カ行促音便ユク,連用形,*
|
749 |
+
748 動詞,自立,*,*,五段・カ行促音便ユク,連用形,行く
|
750 |
+
749 動詞,自立,*,*,五段・ガ行,*,*
|
751 |
+
750 動詞,自立,*,*,五段・ガ行,仮定形,*
|
752 |
+
751 動詞,自立,*,*,五段・ガ行,仮定縮約1,*
|
753 |
+
752 動詞,自立,*,*,五段・ガ行,基本形,*
|
754 |
+
753 動詞,自立,*,*,五段・ガ行,未然ウ接続,*
|
755 |
+
754 動詞,自立,*,*,五段・ガ行,未然形,*
|
756 |
+
755 動詞,自立,*,*,五段・ガ行,命令e,*
|
757 |
+
756 動詞,自立,*,*,五段・ガ行,連用タ接続,*
|
758 |
+
757 動詞,自立,*,*,五段・ガ行,連用形,*
|
759 |
+
758 動詞,自立,*,*,五段・サ行,*,*
|
760 |
+
759 動詞,自立,*,*,五段・サ行,仮定形,*
|
761 |
+
760 動詞,自立,*,*,五段・サ行,仮定縮約1,*
|
762 |
+
761 動詞,自立,*,*,五段・サ行,基本形,*
|
763 |
+
762 動詞,自立,*,*,五段・サ行,未然ウ接続,*
|
764 |
+
763 動詞,自立,*,*,五段・サ行,未然形,*
|
765 |
+
764 動詞,自立,*,*,五段・サ行,命令e,*
|
766 |
+
765 動詞,自立,*,*,五段・サ行,連用形,*
|
767 |
+
766 動詞,自立,*,*,五段・タ行,*,*
|
768 |
+
767 動詞,自立,*,*,五段・タ行,仮定形,*
|
769 |
+
768 動詞,自立,*,*,五段・タ行,仮定縮約1,*
|
770 |
+
769 動詞,自立,*,*,五段・タ行,基本形,*
|
771 |
+
770 動詞,自立,*,*,五段・タ行,未然ウ接続,*
|
772 |
+
771 動詞,自立,*,*,五段・タ行,未然形,*
|
773 |
+
772 動詞,自立,*,*,五段・タ行,命令e,*
|
774 |
+
773 動詞,自立,*,*,五段・タ行,連用タ接続,*
|
775 |
+
774 動詞,自立,*,*,五段・タ行,連用形,*
|
776 |
+
775 動詞,自立,*,*,五段・ナ行,仮定形,*
|
777 |
+
776 動詞,自立,*,*,五段・ナ行,仮定縮約1,*
|
778 |
+
777 動詞,自立,*,*,五段・ナ行,基本形,*
|
779 |
+
778 動詞,自立,*,*,五段・ナ行,未然ウ接続,*
|
780 |
+
779 動詞,自立,*,*,五段・ナ行,未然形,*
|
781 |
+
780 動詞,自立,*,*,五段・ナ行,命令e,*
|
782 |
+
781 動詞,自立,*,*,五段・ナ行,連用タ接続,*
|
783 |
+
782 動詞,自立,*,*,五段・ナ行,連用形,*
|
784 |
+
783 動詞,自立,*,*,五段・バ行,*,*
|
785 |
+
784 動詞,自立,*,*,五段・バ行,仮定形,*
|
786 |
+
785 動詞,自立,*,*,五段・バ行,仮定縮約1,*
|
787 |
+
786 動詞,自立,*,*,五段・バ行,基本形,*
|
788 |
+
787 動詞,自立,*,*,五段・バ行,未然ウ接続,*
|
789 |
+
788 動詞,自立,*,*,五段・バ行,未然形,*
|
790 |
+
789 動詞,自立,*,*,五段・バ行,命令e,*
|
791 |
+
790 動詞,自立,*,*,五段・バ行,連用タ接続,*
|
792 |
+
791 動詞,自立,*,*,五段・バ行,連用形,*
|
793 |
+
792 動詞,自立,*,*,五段・マ行,*,*
|
794 |
+
793 動詞,自立,*,*,五段・マ行,仮定形,*
|
795 |
+
794 動詞,自立,*,*,五段・マ行,仮定縮約1,*
|
796 |
+
795 動詞,自立,*,*,五段・マ行,基本形,*
|
797 |
+
796 動詞,自立,*,*,五段・マ行,未然ウ接続,*
|
798 |
+
797 動詞,自立,*,*,五段・マ行,未然形,*
|
799 |
+
798 動詞,自立,*,*,五段・マ行,命令e,*
|
800 |
+
799 動詞,自立,*,*,五段・マ行,連用タ接続,*
|
801 |
+
800 動詞,自立,*,*,五段・マ行,連用形,*
|
802 |
+
801 動詞,自立,*,*,五段・ラ行,*,*
|
803 |
+
802 動詞,自立,*,*,五段・ラ行,*,する
|
804 |
+
803 動詞,自立,*,*,五段・ラ行,仮定形,*
|
805 |
+
804 動詞,自立,*,*,五段・ラ行,仮定形,する
|
806 |
+
805 動詞,自立,*,*,五段・ラ行,仮定縮約1,*
|
807 |
+
806 動詞,自立,*,*,五段・ラ行,仮定縮約1,する
|
808 |
+
807 動詞,自立,*,*,五段・ラ行,基本形,*
|
809 |
+
808 動詞,自立,*,*,五段・ラ行,基本形,する
|
810 |
+
809 動詞,自立,*,*,五段・ラ行,体言接続特殊,*
|
811 |
+
810 動詞,自立,*,*,五段・ラ行,体言接続特殊,する
|
812 |
+
811 動詞,自立,*,*,五段・ラ行,体言接続特殊2,*
|
813 |
+
812 動詞,自立,*,*,五段・ラ行,体言接続特殊2,する
|
814 |
+
813 動詞,自立,*,*,五段・ラ行,未然ウ接続,*
|
815 |
+
814 動詞,自立,*,*,五段・ラ行,未然ウ接続,する
|
816 |
+
815 動詞,自立,*,*,五段・ラ行,未然形,*
|
817 |
+
816 動詞,自立,*,*,五段・ラ行,未然形,する
|
818 |
+
817 動詞,自立,*,*,五段・ラ行,未然特殊,*
|
819 |
+
818 動詞,自立,*,*,五段・ラ行,未然特殊,する
|
820 |
+
819 動詞,自立,*,*,五段・ラ行,命令e,*
|
821 |
+
820 動詞,自立,*,*,五段・ラ行,命令e,する
|
822 |
+
821 動詞,自立,*,*,五段・ラ行,連用タ接続,*
|
823 |
+
822 動詞,自立,*,*,五段・ラ行,連用タ接続,する
|
824 |
+
823 動詞,自立,*,*,五段・ラ行,連用形,*
|
825 |
+
824 動詞,自立,*,*,五段・ラ行,連用形,する
|
826 |
+
825 動詞,自立,*,*,五段・ラ行特殊,仮定形,*
|
827 |
+
826 動詞,自立,*,*,五段・ラ行特殊,仮定縮約1,*
|
828 |
+
827 動詞,自立,*,*,五段・ラ行特殊,基本形,*
|
829 |
+
828 動詞,自立,*,*,五段・ラ行特殊,未然ウ接続,*
|
830 |
+
829 動詞,自立,*,*,五段・ラ行特殊,未然形,*
|
831 |
+
830 動詞,自立,*,*,五段・ラ行特殊,未然特殊,*
|
832 |
+
831 動詞,自立,*,*,五段・ラ行特殊,命令e,*
|
833 |
+
832 動詞,自立,*,*,五段・ラ行特殊,命令i,*
|
834 |
+
833 動詞,自立,*,*,五段・ラ行特殊,連用タ接続,*
|
835 |
+
834 動詞,自立,*,*,五段・ラ行特殊,連用形,*
|
836 |
+
835 動詞,自立,*,*,五段・ワ行ウ音便,*,*
|
837 |
+
836 動詞,自立,*,*,五段・ワ行ウ音便,仮定形,*
|
838 |
+
837 動詞,自立,*,*,五段・ワ行ウ音便,仮定形,言う
|
839 |
+
838 動詞,自立,*,*,五段・ワ行ウ音便,基本形,*
|
840 |
+
839 動詞,自立,*,*,五段・ワ行ウ音便,基本形,言う
|
841 |
+
840 動詞,自立,*,*,五段・ワ行ウ音便,未��ウ接続,*
|
842 |
+
841 動詞,自立,*,*,五段・ワ行ウ音便,未然ウ接続,言う
|
843 |
+
842 動詞,自立,*,*,五段・ワ行ウ音便,未然形,*
|
844 |
+
843 動詞,自立,*,*,五段・ワ行ウ音便,未然形,言う
|
845 |
+
844 動詞,自立,*,*,五段・ワ行ウ音便,命令e,*
|
846 |
+
845 動詞,自立,*,*,五段・ワ行ウ音便,命令e,言う
|
847 |
+
846 動詞,自立,*,*,五段・ワ行ウ音便,連用タ接続,*
|
848 |
+
847 動詞,自立,*,*,五段・ワ行ウ音便,連用タ接続,言う
|
849 |
+
848 動詞,自立,*,*,五段・ワ行ウ音便,連用形,*
|
850 |
+
849 動詞,自立,*,*,五段・ワ行ウ音便,連用形,言う
|
851 |
+
850 動詞,自立,*,*,五段・ワ行促音便,*,*
|
852 |
+
851 動詞,自立,*,*,五段・ワ行促音便,仮定形,*
|
853 |
+
852 動詞,自立,*,*,五段・ワ行促音便,仮定形,言う
|
854 |
+
853 動詞,自立,*,*,五段・ワ行促音便,仮定形,行う
|
855 |
+
854 動詞,自立,*,*,五段・ワ行促音便,基本形,*
|
856 |
+
855 動詞,自立,*,*,五段・ワ行促音便,基本形,言う
|
857 |
+
856 動詞,自立,*,*,五段・ワ行促音便,基本形,行う
|
858 |
+
857 動詞,自立,*,*,五段・ワ行促音便,未然ウ接続,*
|
859 |
+
858 動詞,自立,*,*,五段・ワ行促音便,未然ウ接続,言う
|
860 |
+
859 動詞,自立,*,*,五段・ワ行促音便,未然ウ接続,行う
|
861 |
+
860 動詞,自立,*,*,五段・ワ行促音便,未然形,*
|
862 |
+
861 動詞,自立,*,*,五段・ワ行促音便,未然形,言う
|
863 |
+
862 動詞,自立,*,*,五段・ワ行促音便,未然形,行う
|
864 |
+
863 動詞,自立,*,*,五段・ワ行促音便,命令e,*
|
865 |
+
864 動詞,自立,*,*,五段・ワ行促音便,命令e,言う
|
866 |
+
865 動詞,自立,*,*,五段・ワ行促音便,命令e,行う
|
867 |
+
866 動詞,自立,*,*,五段・ワ行促音便,連用タ接続,*
|
868 |
+
867 動詞,自立,*,*,五段・ワ行促音便,連用タ接続,言う
|
869 |
+
868 動詞,自立,*,*,五段・ワ行促音便,連用タ接続,行う
|
870 |
+
869 動詞,自立,*,*,五段・ワ行促音便,連用形,*
|
871 |
+
870 動詞,自立,*,*,五段・ワ行促音便,連用形,言う
|
872 |
+
871 動詞,自立,*,*,五段・ワ行促音便,連用形,行う
|
873 |
+
872 動詞,自立,*,*,四段・サ行,仮定形,*
|
874 |
+
873 動詞,自立,*,*,四段・サ行,基本形,*
|
875 |
+
874 動詞,自立,*,*,四段・サ行,未然形,*
|
876 |
+
875 動詞,自立,*,*,四段・サ行,命令e,*
|
877 |
+
876 動詞,自立,*,*,四段・サ行,連用形,*
|
878 |
+
877 動詞,自立,*,*,四段・タ行,仮定形,*
|
879 |
+
878 動詞,自立,*,*,四段・タ行,基本形,*
|
880 |
+
879 動詞,自立,*,*,四段・タ行,未然形,*
|
881 |
+
880 動詞,自立,*,*,四段・タ行,命令e,*
|
882 |
+
881 動詞,自立,*,*,四段・タ行,連用形,*
|
883 |
+
882 動詞,自立,*,*,四段・ハ行,仮定形,*
|
884 |
+
883 動詞,自立,*,*,四段・ハ行,基本形,*
|
885 |
+
884 動詞,自立,*,*,四段・ハ行,未然形,*
|
886 |
+
885 動詞,自立,*,*,四段・ハ行,命令e,*
|
887 |
+
886 動詞,自立,*,*,四段・ハ行,連用形,*
|
888 |
+
887 動詞,自立,*,*,四段・バ行,仮定形,*
|
889 |
+
888 動詞,自立,*,*,四段・バ行,基本形,*
|
890 |
+
889 動詞,自立,*,*,四段・バ行,未然形,*
|
891 |
+
890 動詞,自立,*,*,四段・バ行,命令e,*
|
892 |
+
891 動詞,自立,*,*,四段・バ行,連用形,*
|
893 |
+
892 動詞,自立,*,*,上二・ダ行,仮定形,*
|
894 |
+
893 動詞,自立,*,*,上二・ダ行,基本形,*
|
895 |
+
894 動詞,自立,*,*,上二・ダ行,現代基本形,*
|
896 |
+
895 動詞,自立,*,*,上二・ダ行,体言接続,*
|
897 |
+
896 動詞,自立,*,*,上二・ダ行,未然形,*
|
898 |
+
897 動詞,自立,*,*,上二・ダ行,命令yo,*
|
899 |
+
898 動詞,自立,*,*,上二・ダ行,連用形,*
|
900 |
+
899 動詞,自立,*,*,上二・ハ行,仮定形,*
|
901 |
+
900 動詞,自立,*,*,上二・ハ行,基本形,*
|
902 |
+
901 動詞,自立,*,*,上二・ハ行,体言接続,*
|
903 |
+
902 動詞,自立,*,*,上二・ハ行,未然形,*
|
904 |
+
903 動詞,自立,*,*,上二・ハ行,命令yo,*
|
905 |
+
904 動詞,自立,*,*,上二・ハ行,連用形,*
|
906 |
+
905 動詞,接尾,*,*,一段,仮定形,*
|
907 |
+
906 動詞,接尾,*,*,一段,仮定縮約1,*
|
908 |
+
907 動詞,接尾,*,*,一段,基本形,*
|
909 |
+
908 動詞,接尾,*,*,一段,基本形-促音便,*
|
910 |
+
909 動詞,接尾,*,*,一段,体言接続特殊,*
|
911 |
+
910 動詞,接尾,*,*,一段,未然ウ接続,*
|
912 |
+
911 動詞,接尾,*,*,一段,未然形,*
|
913 |
+
912 動詞,接尾,*,*,一段,命令ro,*
|
914 |
+
913 動詞,接尾,*,*,一段,命令yo,*
|
915 |
+
914 動詞,接尾,*,*,一段,連用形,*
|
916 |
+
915 動詞,接尾,*,*,五段・サ行,仮定形,*
|
917 |
+
916 動詞,接尾,*,*,五段・サ行,仮定縮約1,*
|
918 |
+
917 動詞,接尾,*,*,五段・サ行,基本形,*
|
919 |
+
918 動詞,接尾,*,*,五段・サ行,未然ウ接続,*
|
920 |
+
919 動詞,接尾,*,*,五段・サ行,未然形,*
|
921 |
+
920 動詞,接尾,*,*,五段・サ行,命令e,*
|
922 |
+
921 動詞,接尾,*,*,五段・サ行,連用形,*
|
923 |
+
922 動詞,接尾,*,*,五段・ラ行,仮定形,*
|
924 |
+
923 動詞,接尾,*,*,五段・ラ行,仮定縮約1,*
|
925 |
+
924 動詞,接尾,*,*,五段・ラ行,基本形,*
|
926 |
+
925 動詞,接尾,*,*,五段・ラ行,体言接続特殊,*
|
927 |
+
926 動詞,接尾,*,*,五段・ラ行,体言接続特殊2,*
|
928 |
+
927 動詞,接尾,*,*,五段・ラ行,未然ウ接続,*
|
929 |
+
928 動詞,接尾,*,*,五段・ラ行,未然形,*
|
930 |
+
929 動詞,接尾,*,*,五段・ラ行,未然特殊,*
|
931 |
+
930 動詞,接尾,*,*,五段・ラ行,命令e,*
|
932 |
+
931 動詞,接尾,*,*,五段・ラ行,連用タ接続,*
|
933 |
+
932 動詞,接尾,*,*,五���・ラ行,連用形,*
|
934 |
+
933 動詞,非自立,*,*,カ変・クル,仮定形,来る
|
935 |
+
934 動詞,非自立,*,*,カ変・クル,仮定縮約1,来る
|
936 |
+
935 動詞,非自立,*,*,カ変・クル,基本形,来る
|
937 |
+
936 動詞,非自立,*,*,カ変・クル,体言接続特殊,来る
|
938 |
+
937 動詞,非自立,*,*,カ変・クル,体言接続特殊2,来る
|
939 |
+
938 動詞,非自立,*,*,カ変・クル,未然ウ接続,来る
|
940 |
+
939 動詞,非自立,*,*,カ変・クル,未然形,来る
|
941 |
+
940 動詞,非自立,*,*,カ変・クル,命令i,来る
|
942 |
+
941 動詞,非自立,*,*,カ変・クル,命令yo,来る
|
943 |
+
942 動詞,非自立,*,*,カ変・クル,連用形,来る
|
944 |
+
943 動詞,非自立,*,*,カ変・来ル,仮定形,来る
|
945 |
+
944 動詞,非自立,*,*,カ変・来ル,仮定縮約1,来る
|
946 |
+
945 動詞,非自立,*,*,カ変・来ル,基本形,来る
|
947 |
+
946 動詞,非自立,*,*,カ変・来ル,体言接続特殊,来る
|
948 |
+
947 動詞,非自立,*,*,カ変・来ル,体言接続特殊2,来る
|
949 |
+
948 動詞,非自立,*,*,カ変・来ル,未然ウ接続,来る
|
950 |
+
949 動詞,非自立,*,*,カ変・来ル,未然形,来る
|
951 |
+
950 動詞,非自立,*,*,カ変・来ル,命令i,来る
|
952 |
+
951 動詞,非自立,*,*,カ変・来ル,命令yo,来る
|
953 |
+
952 動詞,非自立,*,*,カ変・来ル,連用形,来る
|
954 |
+
953 動詞,非自立,*,*,一段,*,*
|
955 |
+
954 動詞,非自立,*,*,一段,仮定形,*
|
956 |
+
955 動詞,非自立,*,*,一段,仮定形,る
|
957 |
+
956 動詞,非自立,*,*,一段,仮定縮約1,*
|
958 |
+
957 動詞,非自立,*,*,一段,仮定縮約1,る
|
959 |
+
958 動詞,非自立,*,*,一段,基本形,*
|
960 |
+
959 動詞,非自立,*,*,一段,基本形,る
|
961 |
+
960 動詞,非自立,*,*,一段,基本形-促音便,*
|
962 |
+
961 動詞,非自立,*,*,一段,基本形-促音便,る
|
963 |
+
962 動詞,非自立,*,*,一段,体言接続特殊,*
|
964 |
+
963 動詞,非自立,*,*,一段,体言接続特殊,る
|
965 |
+
964 動詞,非自立,*,*,一段,未然ウ接続,*
|
966 |
+
965 動詞,非自立,*,*,一段,未然ウ接続,る
|
967 |
+
966 動詞,非自立,*,*,一段,未然形,*
|
968 |
+
967 動詞,非自立,*,*,一段,命令ro,*
|
969 |
+
968 動詞,非自立,*,*,一段,命令ro,る
|
970 |
+
969 動詞,非自立,*,*,一段,命令yo,*
|
971 |
+
970 動詞,非自立,*,*,一段,命令yo,る
|
972 |
+
971 動詞,非自立,*,*,一段,連用形,*
|
973 |
+
972 動詞,非自立,*,*,一段・クレル,仮定形,くれる
|
974 |
+
973 動詞,非自立,*,*,一段・クレル,仮定縮約1,くれる
|
975 |
+
974 動詞,非自立,*,*,一段・クレル,基本形,くれる
|
976 |
+
975 動詞,非自立,*,*,一段・クレル,未然ウ接続,くれる
|
977 |
+
976 動詞,非自立,*,*,一段・クレル,未然形,くれる
|
978 |
+
977 動詞,非自立,*,*,一段・クレル,未然特殊,くれる
|
979 |
+
978 動詞,非自立,*,*,一段・クレル,命令e,くれる
|
980 |
+
979 動詞,非自立,*,*,一段・クレル,命令ro,くれる
|
981 |
+
980 動詞,非自立,*,*,一段・クレル,命令yo,くれる
|
982 |
+
981 動詞,非自立,*,*,一段・クレル,連用形,くれる
|
983 |
+
982 動詞,非自立,*,*,一段・得ル,仮定形,*
|
984 |
+
983 動詞,非自立,*,*,一段・得ル,基本形,*
|
985 |
+
984 動詞,非自立,*,*,五段・カ行イ音便,*,*
|
986 |
+
985 動詞,非自立,*,*,五段・カ行イ音便,仮定形,*
|
987 |
+
986 動詞,非自立,*,*,五段・カ行イ音便,仮定形,おく
|
988 |
+
987 動詞,非自立,*,*,五段・カ行イ音便,仮定形,続く
|
989 |
+
988 動詞,非自立,*,*,五段・カ行イ音便,仮定形,抜く
|
990 |
+
989 動詞,非自立,*,*,五段・カ行イ音便,仮定縮約1,*
|
991 |
+
990 動詞,非自立,*,*,五段・カ行イ音便,仮定縮約1,おく
|
992 |
+
991 動詞,非自立,*,*,五段・カ行イ音便,仮定縮約1,続く
|
993 |
+
992 動詞,非自立,*,*,五段・カ行イ音便,仮定縮約1,抜く
|
994 |
+
993 動詞,非自立,*,*,五段・カ行イ音便,基本形,*
|
995 |
+
994 動詞,非自立,*,*,五段・カ行イ音便,基本形,おく
|
996 |
+
995 動詞,非自立,*,*,五段・カ行イ音便,基本形,続く
|
997 |
+
996 動詞,非自立,*,*,五段・カ行イ音便,基本形,抜く
|
998 |
+
997 動詞,非自立,*,*,五段・カ行イ音便,未然ウ接続,*
|
999 |
+
998 動詞,非自立,*,*,五段・カ行イ音便,未然ウ接続,おく
|
1000 |
+
999 動詞,非自立,*,*,五段・カ行イ音便,未然ウ接続,続く
|
1001 |
+
1000 動詞,非自立,*,*,五段・カ行イ音便,未然ウ接続,抜く
|
1002 |
+
1001 動詞,非自立,*,*,五段・カ行イ音便,未然形,*
|
1003 |
+
1002 動詞,非自立,*,*,五段・カ行イ音便,未然形,おく
|
1004 |
+
1003 動詞,非自立,*,*,五段・カ行イ音便,未然形,続く
|
1005 |
+
1004 動詞,非自立,*,*,五段・カ行イ音便,未然形,抜く
|
1006 |
+
1005 動詞,非自立,*,*,五段・カ行イ音便,命令e,*
|
1007 |
+
1006 動詞,非自立,*,*,五段・カ行イ音便,命令e,おく
|
1008 |
+
1007 動詞,非自立,*,*,五段・カ行イ音便,命令e,続く
|
1009 |
+
1008 動詞,非自立,*,*,五段・カ行イ音便,命令e,抜く
|
1010 |
+
1009 動詞,非自立,*,*,五段・カ行イ音便,連用タ接続,*
|
1011 |
+
1010 動詞,非自立,*,*,五段・カ行イ音便,連用タ接続,おく
|
1012 |
+
1011 動詞,非自立,*,*,五段・カ行イ音便,連用タ接続,続く
|
1013 |
+
1012 動詞,非自立,*,*,五段・カ行イ音便,連用タ接続,抜く
|
1014 |
+
1013 動詞,非自立,*,*,五段・カ行イ音便,連用形,*
|
1015 |
+
1014 動詞,非自立,*,*,五段・カ行イ音便,連用形,おく
|
1016 |
+
1015 動詞,非自立,*,*,五段・カ行イ音便,連用形,続く
|
1017 |
+
1016 動詞,非自立,*,*,五段・カ行イ音便,連用形,抜く
|
1018 |
+
1017 動詞,非自立,*,*,五段・カ行促音便,仮定形,*
|
1019 |
+
1018 動詞,非自立,*,*,五段・カ行促音便,仮定形,いく
|
1020 |
+
1019 動詞,非自立,*,*,五段・カ行促音便,仮定形,く
|
1021 |
+
1020 動詞,非自立,*,*,五段・カ行促音便,仮定形,行く
|
1022 |
+
1021 動詞,非自立,*,*,五段・カ行促音便,仮定縮約1,*
|
1023 |
+
1022 動詞,非自立,*,*,五段・カ行促音便,仮定縮約1,いく
|
1024 |
+
1023 動詞,非自立,*,*,五段・カ行促音便,仮定縮約1,く
|
1025 |
+
1024 動詞,非自立,*,*,五段・カ行促音便,仮定縮約1,行く
|
1026 |
+
1025 動詞,非自立,*,*,五段・カ行促音便,基本形,*
|
1027 |
+
1026 動詞,非自立,*,*,五段・カ行促音便,基本形,いく
|
1028 |
+
1027 動詞,非自立,*,*,五段・カ行促音便,基本形,く
|
1029 |
+
1028 動詞,非自立,*,*,五段・カ行促音便,基本形,行く
|
1030 |
+
1029 動詞,非自立,*,*,五段・カ行促音便,未然ウ接続,*
|
1031 |
+
1030 動詞,非自立,*,*,五段・カ行促音便,未然ウ接続,いく
|
1032 |
+
1031 動詞,非自立,*,*,五段・カ行促音便,未然ウ接続,く
|
1033 |
+
1032 動詞,非自立,*,*,五段・カ行促音便,未然ウ接続,行く
|
1034 |
+
1033 動詞,非自立,*,*,五段・カ行促音便,未然形,*
|
1035 |
+
1034 動詞,非自立,*,*,五段・カ行促音便,未然形,いく
|
1036 |
+
1035 動詞,非自立,*,*,五段・カ行促音便,未然形,く
|
1037 |
+
1036 動詞,非自立,*,*,五段・カ行促音便,未然形,行く
|
1038 |
+
1037 動詞,非自立,*,*,五段・カ行促音便,命令e,*
|
1039 |
+
1038 動詞,非自立,*,*,五段・カ行促音便,命令e,いく
|
1040 |
+
1039 動詞,非自立,*,*,五段・カ行促音便,命令e,く
|
1041 |
+
1040 動詞,非自立,*,*,五段・カ行促音便,命令e,行く
|
1042 |
+
1041 動詞,非自立,*,*,五段・カ行促音便,連用タ接続,*
|
1043 |
+
1042 動詞,非自立,*,*,五段・カ行促音便,連用タ接続,いく
|
1044 |
+
1043 動詞,非自立,*,*,五段・カ行促音便,連用タ接続,く
|
1045 |
+
1044 動詞,非自立,*,*,五段・カ行促音便,連用タ接続,行く
|
1046 |
+
1045 動詞,非自立,*,*,五段・カ行促音便,連用形,*
|
1047 |
+
1046 動詞,非自立,*,*,五段・カ行促音便,連用形,いく
|
1048 |
+
1047 動詞,非自立,*,*,五段・カ行促音便,連用形,く
|
1049 |
+
1048 動詞,非自立,*,*,五段・カ行促音便,連用形,行く
|
1050 |
+
1049 動詞,非自立,*,*,五段・カ行促音便ユク,仮定形,ゆく
|
1051 |
+
1050 動詞,非自立,*,*,五段・カ行促音便ユク,仮定形,行く
|
1052 |
+
1051 動詞,非自立,*,*,五段・カ行促音便ユク,仮定縮約1,ゆく
|
1053 |
+
1052 動詞,非自立,*,*,五段・カ行促音便ユク,仮定縮約1,行く
|
1054 |
+
1053 動詞,非自立,*,*,五段・カ行促音便ユク,基本形,ゆく
|
1055 |
+
1054 動詞,非自立,*,*,五段・カ行促音便ユク,基本形,行く
|
1056 |
+
1055 動詞,非自立,*,*,五段・カ行促音便ユク,未然ウ接続,ゆく
|
1057 |
+
1056 動詞,非自立,*,*,五段・カ行促音便ユク,未然ウ接続,行く
|
1058 |
+
1057 動詞,非自立,*,*,五段・カ行促音便ユク,未然形,ゆく
|
1059 |
+
1058 動詞,非自立,*,*,五段・カ行促音便ユク,未然形,行く
|
1060 |
+
1059 動詞,非自立,*,*,五段・カ行促音便ユク,命令e,ゆく
|
1061 |
+
1060 動詞,非自立,*,*,五段・カ行促音便ユク,命令e,行く
|
1062 |
+
1061 動詞,非自立,*,*,五段・カ行促音便ユク,連用形,ゆく
|
1063 |
+
1062 動詞,非自立,*,*,五段・カ行促音便ユク,連用形,行く
|
1064 |
+
1063 動詞,非自立,*,*,五段・サ行,*,*
|
1065 |
+
1064 動詞,非自立,*,*,五段・サ行,*,尽くす
|
1066 |
+
1065 動詞,非自立,*,*,五段・サ行,仮定形,*
|
1067 |
+
1066 動詞,非自立,*,*,五段・サ行,仮定形,出す
|
1068 |
+
1067 動詞,非自立,*,*,五段・サ行,仮定形,尽くす
|
1069 |
+
1068 動詞,非自立,*,*,五段・サ行,仮定形,直す
|
1070 |
+
1069 動詞,非自立,*,*,五段・サ行,仮定縮約1,*
|
1071 |
+
1070 動詞,非自立,*,*,五段・サ行,仮定縮約1,出す
|
1072 |
+
1071 動詞,非自立,*,*,五段・サ行,仮定縮約1,尽くす
|
1073 |
+
1072 動詞,非自立,*,*,五段・サ行,仮定縮約1,直す
|
1074 |
+
1073 動詞,非自立,*,*,五段・サ行,基本形,出す
|
1075 |
+
1074 動詞,非自立,*,*,五段・サ行,基本形,尽くす
|
1076 |
+
1075 動詞,非自立,*,*,五段・サ行,基本形,直す
|
1077 |
+
1076 動詞,非自立,*,*,五段・サ行,未然ウ接続,*
|
1078 |
+
1077 動詞,非自立,*,*,五段・サ行,未然ウ接続,出す
|
1079 |
+
1078 動詞,非自立,*,*,五段・サ行,未然ウ接続,尽くす
|
1080 |
+
1079 動詞,非自立,*,*,五段・サ行,未然ウ接続,直す
|
1081 |
+
1080 動詞,非自立,*,*,五段・サ行,未然形,*
|
1082 |
+
1081 動詞,非自立,*,*,五段・サ行,未然形,出す
|
1083 |
+
1082 動詞,非自立,*,*,五段・サ行,未然形,尽くす
|
1084 |
+
1083 動詞,非自立,*,*,五段・サ行,未然形,直す
|
1085 |
+
1084 動詞,非自立,*,*,五段・サ行,命令e,*
|
1086 |
+
1085 動詞,非自立,*,*,五段・サ行,命令e,出す
|
1087 |
+
1086 動詞,非自立,*,*,五段・サ行,命令e,尽くす
|
1088 |
+
1087 動詞,非自立,*,*,五段・サ行,命令e,直す
|
1089 |
+
1088 動詞,非自立,*,*,五段・サ行,連用形,*
|
1090 |
+
1089 動詞,非自立,*,*,五段・サ行,連用形,出す
|
1091 |
+
1090 動詞,非自立,*,*,五段・サ���,連用形,尽くす
|
1092 |
+
1091 動詞,非自立,*,*,五段・サ行,連用形,直す
|
1093 |
+
1092 動詞,非自立,*,*,五段・タ行,*,*
|
1094 |
+
1093 動詞,非自立,*,*,五段・タ行,仮定形,*
|
1095 |
+
1094 動詞,非自立,*,*,五段・タ行,仮定縮約1,*
|
1096 |
+
1095 動詞,非自立,*,*,五段・タ行,未然ウ接続,*
|
1097 |
+
1096 動詞,非自立,*,*,五段・タ行,未然形,*
|
1098 |
+
1097 動詞,非自立,*,*,五段・タ行,命令e,*
|
1099 |
+
1098 動詞,非自立,*,*,五段・タ行,連用タ接続,*
|
1100 |
+
1099 動詞,非自立,*,*,五段・タ行,連用形,*
|
1101 |
+
1100 動詞,非自立,*,*,五段・ナ行,*,*
|
1102 |
+
1101 動詞,非自立,*,*,五段・ナ行,仮定形,*
|
1103 |
+
1102 動詞,非自立,*,*,五段・ナ行,仮定縮約1,*
|
1104 |
+
1103 動詞,非自立,*,*,五段・ナ行,未然ウ接続,*
|
1105 |
+
1104 動詞,非自立,*,*,五段・ナ行,未然形,*
|
1106 |
+
1105 動詞,非自立,*,*,五段・ナ行,命令e,*
|
1107 |
+
1106 動詞,非自立,*,*,五段・ナ行,連用タ接続,*
|
1108 |
+
1107 動詞,非自立,*,*,五段・ナ行,連用形,*
|
1109 |
+
1108 動詞,非自立,*,*,五段・マ行,*,*
|
1110 |
+
1109 動詞,非自立,*,*,五段・マ行,仮定形,*
|
1111 |
+
1110 動詞,非自立,*,*,五段・マ行,仮定形,込む
|
1112 |
+
1111 動詞,非自立,*,*,五段・マ行,仮定縮約1,*
|
1113 |
+
1112 動詞,非自立,*,*,五段・マ行,仮定縮約1,込む
|
1114 |
+
1113 動詞,非自立,*,*,五段・マ行,基本形,込む
|
1115 |
+
1114 動詞,非自立,*,*,五段・マ行,未然ウ接続,*
|
1116 |
+
1115 動詞,非自立,*,*,五段・マ行,未然ウ接続,込む
|
1117 |
+
1116 動詞,非自立,*,*,五段・マ行,未然形,*
|
1118 |
+
1117 動詞,非自立,*,*,五段・マ行,未然形,込む
|
1119 |
+
1118 動詞,非自立,*,*,五段・マ行,命令e,*
|
1120 |
+
1119 動詞,非自立,*,*,五段・マ行,命令e,込む
|
1121 |
+
1120 動詞,非自立,*,*,五段・マ行,連用タ接続,*
|
1122 |
+
1121 動詞,非自立,*,*,五段・マ行,連用タ接続,込む
|
1123 |
+
1122 動詞,非自立,*,*,五段・マ行,連用形,*
|
1124 |
+
1123 動詞,非自立,*,*,五段・マ行,連用形,込む
|
1125 |
+
1124 動詞,非自立,*,*,五段・ラ行,*,*
|
1126 |
+
1125 動詞,非自立,*,*,五段・ラ行,*,切る
|
1127 |
+
1126 動詞,非自立,*,*,五段・ラ行,仮定形,*
|
1128 |
+
1127 動詞,非自立,*,*,五段・ラ行,仮定形,ある
|
1129 |
+
1128 動詞,非自立,*,*,五段・ラ行,仮定形,おる
|
1130 |
+
1129 動詞,非自立,*,*,五段・ラ行,仮定形,かかる
|
1131 |
+
1130 動詞,非自立,*,*,五段・ラ行,仮定形,きる
|
1132 |
+
1131 動詞,非自立,*,*,五段・ラ行,仮定形,なる
|
1133 |
+
1132 動詞,非自立,*,*,五段・ラ行,仮定形,まいる
|
1134 |
+
1133 動詞,非自立,*,*,五段・ラ行,仮定形,まわる
|
1135 |
+
1134 動詞,非自立,*,*,五段・ラ行,仮定形,やる
|
1136 |
+
1135 動詞,非自立,*,*,五段・ラ行,仮定形,回る
|
1137 |
+
1136 動詞,非自立,*,*,五段・ラ行,仮定形,参る
|
1138 |
+
1137 動詞,非自立,*,*,五段・ラ行,仮定形,終わる
|
1139 |
+
1138 動詞,非自立,*,*,五段・ラ行,仮定形,切る
|
1140 |
+
1139 動詞,非自立,*,*,五段・ラ行,仮定縮約1,*
|
1141 |
+
1140 動詞,非自立,*,*,五段・ラ行,仮定縮約1,ある
|
1142 |
+
1141 動詞,非自立,*,*,五段・ラ行,仮定縮約1,おる
|
1143 |
+
1142 動詞,非自立,*,*,五段・ラ行,仮定縮約1,かかる
|
1144 |
+
1143 動詞,非自立,*,*,五段・ラ行,仮定縮約1,きる
|
1145 |
+
1144 動詞,非自立,*,*,五段・ラ行,仮定縮約1,なる
|
1146 |
+
1145 動詞,非自立,*,*,五段・ラ行,仮定縮約1,まいる
|
1147 |
+
1146 動詞,非自立,*,*,五段・ラ行,仮定縮約1,まわる
|
1148 |
+
1147 動詞,非自立,*,*,五段・ラ行,仮定縮約1,やる
|
1149 |
+
1148 動詞,非自立,*,*,五段・ラ行,仮定縮約1,回る
|
1150 |
+
1149 動詞,非自立,*,*,五段・ラ行,仮定縮約1,参る
|
1151 |
+
1150 動詞,非自立,*,*,五段・ラ行,仮定縮約1,終わる
|
1152 |
+
1151 動詞,非自立,*,*,五段・ラ行,仮定縮約1,切る
|
1153 |
+
1152 動詞,非自立,*,*,五段・ラ行,基本形,*
|
1154 |
+
1153 動詞,非自立,*,*,五段・ラ行,基本形,ある
|
1155 |
+
1154 動詞,非自立,*,*,五段・ラ行,基本形,おる
|
1156 |
+
1155 動詞,非自立,*,*,五段・ラ行,基本形,かかる
|
1157 |
+
1156 動詞,非自立,*,*,五段・ラ行,基本形,きる
|
1158 |
+
1157 動詞,非自立,*,*,五段・ラ行,基本形,なる
|
1159 |
+
1158 動詞,非自立,*,*,五段・ラ行,基本形,まいる
|
1160 |
+
1159 動詞,非自立,*,*,五段・ラ行,基本形,まわる
|
1161 |
+
1160 動詞,非自立,*,*,五段・ラ行,基本形,やる
|
1162 |
+
1161 動詞,非自立,*,*,五段・ラ行,基本形,回る
|
1163 |
+
1162 動詞,非自立,*,*,五段・ラ行,基本形,参る
|
1164 |
+
1163 動詞,非自立,*,*,五段・ラ行,基本形,終わる
|
1165 |
+
1164 動詞,非自立,*,*,五段・ラ行,基本形,切る
|
1166 |
+
1165 動詞,非自立,*,*,五段・ラ行,体言接続特殊,*
|
1167 |
+
1166 動詞,非自立,*,*,五段・ラ行,体言接続特殊,ある
|
1168 |
+
1167 動詞,非自立,*,*,五段・ラ行,体言接続特殊,おる
|
1169 |
+
1168 動詞,非自立,*,*,五段・ラ行,体言接続特殊,かかる
|
1170 |
+
1169 動詞,非自立,*,*,五段・ラ行,体言接続特殊,きる
|
1171 |
+
1170 動詞,非自立,*,*,五段・ラ行,体言接続特殊,なる
|
1172 |
+
1171 動詞,非自立,*,*,五段・ラ行,体言接続特殊,まいる
|
1173 |
+
1172 動詞,非自立,*,*,五段・ラ行,体言接続特殊,まわる
|
1174 |
+
1173 動詞,非自立,*,*,五段・ラ行,体言接続特殊,やる
|
1175 |
+
1174 動詞,非自立,*,*,五段・ラ行,体言接続特殊,回る
|
1176 |
+
1175 動詞,非自立,*,*,五段・ラ行,体言接続特殊,参る
|
1177 |
+
1176 動詞,非自立,*,*,五段・ラ行,体言接続特殊,終わる
|
1178 |
+
1177 動詞,非自立,*,*,五段・ラ行,体言接続特殊,切る
|
1179 |
+
1178 動詞,非自立,*,*,五段・ラ行,体言接続特殊2,*
|
1180 |
+
1179 動詞,非自立,*,*,五段・ラ行,体言接続特殊2,ある
|
1181 |
+
1180 動詞,非自立,*,*,五段・ラ行,体言接続特殊2,おる
|
1182 |
+
1181 動詞,非自立,*,*,五段・ラ行,体言接続特殊2,かかる
|
1183 |
+
1182 動詞,非自立,*,*,五段・ラ行,体言接続特殊2,きる
|
1184 |
+
1183 動詞,非自立,*,*,五段・ラ行,体言接続特殊2,なる
|
1185 |
+
1184 動詞,非自立,*,*,五段・ラ行,体言接続特殊2,まいる
|
1186 |
+
1185 動詞,非自立,*,*,五段・ラ行,体言接続特殊2,まわる
|
1187 |
+
1186 動詞,非自立,*,*,五段・ラ行,体言接続特殊2,やる
|
1188 |
+
1187 動詞,非自立,*,*,五段・ラ行,体言接続特殊2,回る
|
1189 |
+
1188 動詞,非自立,*,*,五段・ラ行,体言接続特殊2,参る
|
1190 |
+
1189 動詞,非自立,*,*,五段・ラ行,体言接続特殊2,終わる
|
1191 |
+
1190 動詞,非自立,*,*,五段・ラ行,体言接続特殊2,切る
|
1192 |
+
1191 動詞,非自立,*,*,五段・ラ行,未然ウ接続,*
|
1193 |
+
1192 動詞,非自立,*,*,五段・ラ行,未然ウ接続,ある
|
1194 |
+
1193 動詞,非自立,*,*,五段・ラ行,未然ウ接続,おる
|
1195 |
+
1194 動詞,非自立,*,*,五段・ラ行,未然ウ接続,かかる
|
1196 |
+
1195 動詞,非自立,*,*,五段・ラ行,未然ウ接続,きる
|
1197 |
+
1196 動詞,非自立,*,*,五段・ラ行,未然ウ接続,なる
|
1198 |
+
1197 動詞,非自立,*,*,五段・ラ行,未然ウ接続,まいる
|
1199 |
+
1198 動詞,非自立,*,*,五段・ラ行,未然ウ接続,まわる
|
1200 |
+
1199 動詞,非自立,*,*,五段・ラ行,未然ウ接続,やる
|
1201 |
+
1200 動詞,非自立,*,*,五段・ラ行,未然ウ接続,回る
|
1202 |
+
1201 動詞,非自立,*,*,五段・ラ行,未然ウ接続,参る
|
1203 |
+
1202 動詞,非自立,*,*,五段・ラ行,未然ウ接続,終わる
|
1204 |
+
1203 動詞,非自立,*,*,五段・ラ行,未然ウ接続,切る
|
1205 |
+
1204 動詞,非自立,*,*,五段・ラ行,未然形,*
|
1206 |
+
1205 動詞,非自立,*,*,五段・ラ行,未然形,ある
|
1207 |
+
1206 動詞,非自立,*,*,五段・ラ行,未然形,おる
|
1208 |
+
1207 動詞,非自立,*,*,五段・ラ行,未然形,かかる
|
1209 |
+
1208 動詞,非自立,*,*,五段・ラ行,未然形,きる
|
1210 |
+
1209 動詞,非自立,*,*,五段・ラ行,未然形,なる
|
1211 |
+
1210 動詞,非自立,*,*,五段・ラ行,未然形,まいる
|
1212 |
+
1211 動詞,非自立,*,*,五段・ラ行,未然形,まわる
|
1213 |
+
1212 動詞,非自立,*,*,五段・ラ行,未然形,やる
|
1214 |
+
1213 動詞,非自立,*,*,五段・ラ行,未然形,回る
|
1215 |
+
1214 動詞,非自立,*,*,五段・ラ行,未然形,参る
|
1216 |
+
1215 動詞,非自立,*,*,五段・ラ行,未然形,終わる
|
1217 |
+
1216 動詞,非自立,*,*,五段・ラ行,未然形,切る
|
1218 |
+
1217 動詞,非自立,*,*,五段・ラ行,未然特殊,*
|
1219 |
+
1218 動詞,非自立,*,*,五段・ラ行,未然特殊,ある
|
1220 |
+
1219 動詞,非自立,*,*,五段・ラ行,未然特殊,おる
|
1221 |
+
1220 動詞,非自立,*,*,五段・ラ行,未然特殊,かかる
|
1222 |
+
1221 動詞,非自立,*,*,五段・ラ行,未然特殊,きる
|
1223 |
+
1222 動詞,非自立,*,*,五段・ラ行,未然特殊,なる
|
1224 |
+
1223 動詞,非自立,*,*,五段・ラ行,未然特殊,まいる
|
1225 |
+
1224 動詞,非自立,*,*,五段・ラ行,未然特殊,まわる
|
1226 |
+
1225 動詞,非自立,*,*,五段・ラ行,未然特殊,やる
|
1227 |
+
1226 動詞,非自立,*,*,五段・ラ行,未然特殊,回る
|
1228 |
+
1227 動詞,非自立,*,*,五段・ラ行,未然特殊,参る
|
1229 |
+
1228 動詞,非自立,*,*,五段・ラ行,未然特殊,終わる
|
1230 |
+
1229 動詞,非自立,*,*,五段・ラ行,未然特殊,切る
|
1231 |
+
1230 動詞,非自立,*,*,五段・ラ行,命令e,*
|
1232 |
+
1231 動詞,非自立,*,*,五段・ラ行,命令e,ある
|
1233 |
+
1232 動詞,非自立,*,*,五段・ラ行,命令e,おる
|
1234 |
+
1233 動詞,非自立,*,*,五段・ラ行,命令e,かかる
|
1235 |
+
1234 動詞,非自立,*,*,五段・ラ行,命令e,きる
|
1236 |
+
1235 動詞,非自立,*,*,五段・ラ行,命令e,なる
|
1237 |
+
1236 動詞,非自立,*,*,五段・ラ行,命令e,まいる
|
1238 |
+
1237 動詞,非自立,*,*,五段・ラ行,命令e,まわる
|
1239 |
+
1238 動詞,非自立,*,*,五段・ラ行,命令e,やる
|
1240 |
+
1239 動詞,非自立,*,*,五段・ラ行,命令e,回る
|
1241 |
+
1240 動詞,非自立,*,*,五段・ラ行,命令e,参る
|
1242 |
+
1241 動詞,非自立,*,*,五段・ラ行,命令e,終わる
|
1243 |
+
1242 動詞,非自立,*,*,五段・ラ行,命令e,切る
|
1244 |
+
1243 動詞,非自立,*,*,五段・ラ行,連用タ接続,*
|
1245 |
+
1244 動詞,非自立,*,*,五段・ラ行,連用タ接続,ある
|
1246 |
+
1245 動詞,非自立,*,*,五段・ラ行,連用タ接続,おる
|
1247 |
+
1246 動詞,非自立,*,*,五段・ラ行,連用タ接続,かかる
|
1248 |
+
1247 動詞,非自立,*,*,五段・ラ行,連用タ接続,きる
|
1249 |
+
1248 動詞,非自立,*,*,五段・ラ行,連用タ接続,なる
|
1250 |
+
1249 動詞,非自立,*,*,五段・ラ行,連用タ接続,まいる
|
1251 |
+
1250 動詞,非自立,*,*,五段・ラ行,連用タ接続,まわる
|
1252 |
+
1251 動詞,非自立,*,*,五段・ラ行,連用タ接続,やる
|
1253 |
+
1252 動詞,非自立,*,*,五段・ラ行,連用タ接続,��る
|
1254 |
+
1253 動詞,非自立,*,*,五段・ラ行,連用タ接続,参る
|
1255 |
+
1254 動詞,非自立,*,*,五段・ラ行,連用タ接続,終わる
|
1256 |
+
1255 動詞,非自立,*,*,五段・ラ行,連用タ接続,切る
|
1257 |
+
1256 動詞,非自立,*,*,五段・ラ行,連用形,*
|
1258 |
+
1257 動詞,非自立,*,*,五段・ラ行,連用形,ある
|
1259 |
+
1258 動詞,非自立,*,*,五段・ラ行,連用形,おる
|
1260 |
+
1259 動詞,非自立,*,*,五段・ラ行,連用形,かかる
|
1261 |
+
1260 動詞,非自立,*,*,五段・ラ行,連用形,きる
|
1262 |
+
1261 動詞,非自立,*,*,五段・ラ行,連用形,なる
|
1263 |
+
1262 動詞,非自立,*,*,五段・ラ行,連用形,まいる
|
1264 |
+
1263 動詞,非自立,*,*,五段・ラ行,連用形,まわる
|
1265 |
+
1264 動詞,非自立,*,*,五段・ラ行,連用形,やる
|
1266 |
+
1265 動詞,非自立,*,*,五段・ラ行,連用形,回る
|
1267 |
+
1266 動詞,非自立,*,*,五段・ラ行,連用形,参る
|
1268 |
+
1267 動詞,非自立,*,*,五段・ラ行,連用形,終わる
|
1269 |
+
1268 動詞,非自立,*,*,五段・ラ行,連用形,切る
|
1270 |
+
1269 動詞,非自立,*,*,五段・ラ行特殊,仮定形,なさる
|
1271 |
+
1270 動詞,非自立,*,*,五段・ラ行特殊,仮定形,らっしゃる
|
1272 |
+
1271 動詞,非自立,*,*,五段・ラ行特殊,仮定形,下さる
|
1273 |
+
1272 動詞,非自立,*,*,五段・ラ行特殊,仮定縮約1,なさる
|
1274 |
+
1273 動詞,非自立,*,*,五段・ラ行特殊,仮定縮約1,らっしゃる
|
1275 |
+
1274 動詞,非自立,*,*,五段・ラ行特殊,仮定縮約1,下さる
|
1276 |
+
1275 動詞,非自立,*,*,五段・ラ行特殊,基本形,なさる
|
1277 |
+
1276 動詞,非自立,*,*,五段・ラ行特殊,基本形,らっしゃる
|
1278 |
+
1277 動詞,非自立,*,*,五段・ラ行特殊,基本形,下さる
|
1279 |
+
1278 動詞,非自立,*,*,五段・ラ行特殊,未然ウ接続,なさる
|
1280 |
+
1279 動詞,非自立,*,*,五段・ラ行特殊,未然ウ接続,らっしゃる
|
1281 |
+
1280 動詞,非自立,*,*,五段・ラ行特殊,未然ウ接続,下さる
|
1282 |
+
1281 動詞,非自立,*,*,五段・ラ行特殊,未然形,なさる
|
1283 |
+
1282 動詞,非自立,*,*,五段・ラ行特殊,未然形,らっしゃる
|
1284 |
+
1283 動詞,非自立,*,*,五段・ラ行特殊,未然形,下さる
|
1285 |
+
1284 動詞,非自立,*,*,五段・ラ行特殊,未然特殊,なさる
|
1286 |
+
1285 動詞,非自立,*,*,五段・ラ行特殊,未然特殊,らっしゃる
|
1287 |
+
1286 動詞,非自立,*,*,五段・ラ行特殊,未然特殊,下さる
|
1288 |
+
1287 動詞,非自立,*,*,五段・ラ行特殊,命令e,なさる
|
1289 |
+
1288 動詞,非自立,*,*,五段・ラ行特殊,命令e,らっしゃる
|
1290 |
+
1289 動詞,非自立,*,*,五段・ラ行特殊,命令e,下さる
|
1291 |
+
1290 動詞,非自立,*,*,五段・ラ行特殊,命令i,なさる
|
1292 |
+
1291 動詞,非自立,*,*,五段・ラ行特殊,命令i,らっしゃる
|
1293 |
+
1292 動詞,非自立,*,*,五段・ラ行特殊,命令i,下さる
|
1294 |
+
1293 動詞,非自立,*,*,五段・ラ行特殊,連用タ接続,なさる
|
1295 |
+
1294 動詞,非自立,*,*,五段・ラ行特殊,連用タ接続,らっしゃる
|
1296 |
+
1295 動詞,非自立,*,*,五段・ラ行特殊,連用タ接続,下さる
|
1297 |
+
1296 動詞,非自立,*,*,五段・ラ行特殊,連用形,なさる
|
1298 |
+
1297 動詞,非自立,*,*,五段・ラ行特殊,連用形,らっしゃる
|
1299 |
+
1298 動詞,非自立,*,*,五段・ラ行特殊,連用形,下さる
|
1300 |
+
1299 動詞,非自立,*,*,五段・ワ行ウ音便,*,*
|
1301 |
+
1300 動詞,非自立,*,*,五段・ワ行ウ音便,仮定形,*
|
1302 |
+
1301 動詞,非自立,*,*,五段・ワ行ウ音便,未然ウ接続,*
|
1303 |
+
1302 動詞,非自立,*,*,五段・ワ行ウ音便,未然形,*
|
1304 |
+
1303 動詞,非自立,*,*,五段・ワ行ウ音便,命令e,*
|
1305 |
+
1304 動詞,非自立,*,*,五段・ワ行ウ音便,連用タ接続,*
|
1306 |
+
1305 動詞,非自立,*,*,五段・ワ行ウ音便,連用形,*
|
1307 |
+
1306 動詞,非自立,*,*,五段・ワ行促音便,*,*
|
1308 |
+
1307 動詞,非自立,*,*,五段・ワ行促音便,仮定形,*
|
1309 |
+
1308 動詞,非自立,*,*,五段・ワ行促音便,仮定形,しまう
|
1310 |
+
1309 動詞,非自立,*,*,五段・ワ行促音便,仮定形,もらう
|
1311 |
+
1310 動詞,非自立,*,*,五段・ワ行促音便,仮定形,合う
|
1312 |
+
1311 動詞,非自立,*,*,五段・ワ行促音便,基本形,*
|
1313 |
+
1312 動詞,非自立,*,*,五段・ワ行促音便,基本形,しまう
|
1314 |
+
1313 動詞,非自立,*,*,五段・ワ行促音便,基本形,もらう
|
1315 |
+
1314 動詞,非自立,*,*,五段・ワ行促音便,基本形,合う
|
1316 |
+
1315 動詞,非自立,*,*,五段・ワ行促音便,未然ウ接続,*
|
1317 |
+
1316 動詞,非自立,*,*,五段・ワ行促音便,未然ウ接続,しまう
|
1318 |
+
1317 動詞,非自立,*,*,五段・ワ行促音便,未然ウ接続,もらう
|
1319 |
+
1318 動詞,非自立,*,*,五段・ワ行促音便,未然ウ接続,合う
|
1320 |
+
1319 動詞,非自立,*,*,五段・ワ行促音便,未然形,*
|
1321 |
+
1320 動詞,非自立,*,*,五段・ワ行促音便,未然形,しまう
|
1322 |
+
1321 動詞,非自立,*,*,五段・ワ行促音便,未然形,もらう
|
1323 |
+
1322 動詞,非自立,*,*,五段・ワ行促音便,未然形,合う
|
1324 |
+
1323 動詞,非自立,*,*,五段・ワ行促音便,命令e,*
|
1325 |
+
1324 動詞,非自立,*,*,五段・ワ行促音便,命令e,しまう
|
1326 |
+
1325 動詞,非自立,*,*,五段・ワ行促音便,命令e,もらう
|
1327 |
+
1326 動詞,非自立,*,*,五段・ワ行促音便,命令e,合う
|
1328 |
+
1327 動詞,非���立,*,*,五段・ワ行促音便,連用タ接続,*
|
1329 |
+
1328 動詞,非自立,*,*,五段・ワ行促音便,連用タ接続,しまう
|
1330 |
+
1329 動詞,非自立,*,*,五段・ワ行促音便,連用タ接続,もらう
|
1331 |
+
1330 動詞,非自立,*,*,五段・ワ行促音便,連用タ接続,合う
|
1332 |
+
1331 動詞,非自立,*,*,五段・ワ行促音便,連用形,*
|
1333 |
+
1332 動詞,非自立,*,*,五段・ワ行促音便,連用形,しまう
|
1334 |
+
1333 動詞,非自立,*,*,五段・ワ行促音便,連用形,もらう
|
1335 |
+
1334 動詞,非自立,*,*,五段・ワ行促音便,連用形,合う
|
1336 |
+
1335 動詞,非自立,*,*,四段・ハ行,仮定形,*
|
1337 |
+
1336 動詞,非自立,*,*,四段・ハ行,基本形,*
|
1338 |
+
1337 動詞,非自立,*,*,四段・ハ行,未然形,*
|
1339 |
+
1338 動詞,非自立,*,*,四段・ハ行,命令e,*
|
1340 |
+
1339 動詞,非自立,*,*,四段・ハ行,連用形,*
|
1341 |
+
1340 副詞,*,*,*,*,*,*
|
1342 |
+
1341 副詞,一般,*,*,*,*,*
|
1343 |
+
1342 副詞,助詞類接続,*,*,*,*,*
|
1344 |
+
1343 名詞,サ変接続,*,*,*,*,*
|
1345 |
+
1344 名詞,ナイ形容詞語幹,*,*,*,*,*
|
1346 |
+
1345 名詞,一般,*,*,*,*,*
|
1347 |
+
1346 名詞,一般,*,*,*,0,*
|
1348 |
+
1347 名詞,形容動詞語幹,*,*,*,*,*
|
1349 |
+
1348 名詞,固有名詞,一般,*,*,*,*
|
1350 |
+
1349 名詞,固有名詞,人名,一般,*,*,*
|
1351 |
+
1350 名詞,固有名詞,人名,姓,*,*,*
|
1352 |
+
1351 名詞,固有名詞,人名,名,*,*,*
|
1353 |
+
1352 名詞,固有名詞,組織,*,*,*,*
|
1354 |
+
1353 名詞,固有名詞,地域,一般,*,*,*
|
1355 |
+
1354 名詞,固有名詞,地域,国,*,*,*
|
1356 |
+
1355 名詞,数,*,*,*,*,*
|
1357 |
+
1356 名詞,接続詞的,*,*,*,*,*
|
1358 |
+
1357 名詞,接尾,サ変接続,*,*,*,*
|
1359 |
+
1358 名詞,接尾,一般,*,*,*,*
|
1360 |
+
1359 名詞,接尾,形容動詞語幹,*,*,*,*
|
1361 |
+
1360 名詞,接尾,助数詞,*,*,*,*
|
1362 |
+
1361 名詞,接尾,助動詞語幹,*,*,*,*
|
1363 |
+
1362 名詞,接尾,人名,*,*,*,*
|
1364 |
+
1363 名詞,接尾,地域,*,*,*,*
|
1365 |
+
1364 名詞,接尾,特殊,*,*,*,*
|
1366 |
+
1365 名詞,接尾,副詞可能,*,*,*,*
|
1367 |
+
1366 名詞,代名詞,一般,*,*,*,*
|
1368 |
+
1367 名詞,代名詞,縮約,*,*,*,*
|
1369 |
+
1368 名詞,動詞非自立的,*,*,*,*,*
|
1370 |
+
1369 名詞,特殊,助動詞語幹,*,*,*,*
|
1371 |
+
1370 名詞,非自立,*,*,*,*,*
|
1372 |
+
1371 名詞,非自立,一般,*,*,*,*
|
1373 |
+
1372 名詞,非自立,形容動詞語幹,*,*,*,*
|
1374 |
+
1373 名詞,非自立,助動詞語幹,*,*,*,*
|
1375 |
+
1374 名詞,非自立,副詞可能,*,*,*,*
|
1376 |
+
1375 名詞,副詞可能,*,*,*,*,*
|
1377 |
+
1376 連体詞,*,*,*,*,*,*
|
dict/unk.dic
ADDED
Binary file (5.69 kB). View file
|
|
finetune_speaker_v2.py
ADDED
@@ -0,0 +1,351 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import argparse
|
4 |
+
import itertools
|
5 |
+
import math
|
6 |
+
import torch
|
7 |
+
from torch import nn, optim
|
8 |
+
from torch.nn import functional as F
|
9 |
+
from torch.utils.data import DataLoader
|
10 |
+
from torch.utils.tensorboard import SummaryWriter
|
11 |
+
import torch.multiprocessing as mp
|
12 |
+
import torch.distributed as dist
|
13 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
14 |
+
from torch.cuda.amp import autocast, GradScaler
|
15 |
+
from tqdm import tqdm
|
16 |
+
|
17 |
+
import librosa
|
18 |
+
import logging
|
19 |
+
|
20 |
+
logging.getLogger('numba').setLevel(logging.WARNING)
|
21 |
+
|
22 |
+
import commons
|
23 |
+
import utils
|
24 |
+
from data_utils import (
|
25 |
+
TextAudioSpeakerLoader,
|
26 |
+
TextAudioSpeakerCollate,
|
27 |
+
DistributedBucketSampler
|
28 |
+
)
|
29 |
+
from models import (
|
30 |
+
SynthesizerTrn,
|
31 |
+
MultiPeriodDiscriminator,
|
32 |
+
)
|
33 |
+
from losses import (
|
34 |
+
generator_loss,
|
35 |
+
discriminator_loss,
|
36 |
+
feature_loss,
|
37 |
+
kl_loss
|
38 |
+
)
|
39 |
+
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
|
40 |
+
|
41 |
+
|
42 |
+
torch.backends.cudnn.benchmark = True
|
43 |
+
global_step = 0
|
44 |
+
|
45 |
+
|
46 |
+
def main():
|
47 |
+
"""Assume Single Node Multi GPUs Training Only"""
|
48 |
+
assert torch.cuda.is_available(), "CPU training is not allowed."
|
49 |
+
|
50 |
+
n_gpus = torch.cuda.device_count()
|
51 |
+
os.environ['MASTER_ADDR'] = 'localhost'
|
52 |
+
os.environ['MASTER_PORT'] = '8000'
|
53 |
+
|
54 |
+
hps = utils.get_hparams()
|
55 |
+
mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
|
56 |
+
|
57 |
+
|
58 |
+
def run(rank, n_gpus, hps):
|
59 |
+
global global_step
|
60 |
+
symbols = hps['symbols']
|
61 |
+
if rank == 0:
|
62 |
+
logger = utils.get_logger(hps.model_dir)
|
63 |
+
logger.info(hps)
|
64 |
+
utils.check_git_hash(hps.model_dir)
|
65 |
+
writer = SummaryWriter(log_dir=hps.model_dir)
|
66 |
+
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
|
67 |
+
|
68 |
+
# Use gloo backend on Windows for Pytorch
|
69 |
+
dist.init_process_group(backend= 'gloo' if os.name == 'nt' else 'nccl', init_method='env://', world_size=n_gpus, rank=rank)
|
70 |
+
torch.manual_seed(hps.train.seed)
|
71 |
+
torch.cuda.set_device(rank)
|
72 |
+
|
73 |
+
train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data, symbols)
|
74 |
+
train_sampler = DistributedBucketSampler(
|
75 |
+
train_dataset,
|
76 |
+
hps.train.batch_size,
|
77 |
+
[32,300,400,500,600,700,800,900,1000],
|
78 |
+
num_replicas=n_gpus,
|
79 |
+
rank=rank,
|
80 |
+
shuffle=True)
|
81 |
+
collate_fn = TextAudioSpeakerCollate()
|
82 |
+
train_loader = DataLoader(train_dataset, num_workers=2, shuffle=False, pin_memory=True,
|
83 |
+
collate_fn=collate_fn, batch_sampler=train_sampler)
|
84 |
+
# train_loader = DataLoader(train_dataset, batch_size=hps.train.batch_size, num_workers=2, shuffle=False, pin_memory=True,
|
85 |
+
# collate_fn=collate_fn)
|
86 |
+
if rank == 0:
|
87 |
+
eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data, symbols)
|
88 |
+
eval_loader = DataLoader(eval_dataset, num_workers=0, shuffle=False,
|
89 |
+
batch_size=hps.train.batch_size, pin_memory=True,
|
90 |
+
drop_last=False, collate_fn=collate_fn)
|
91 |
+
|
92 |
+
net_g = SynthesizerTrn(
|
93 |
+
len(symbols),
|
94 |
+
hps.data.filter_length // 2 + 1,
|
95 |
+
hps.train.segment_size // hps.data.hop_length,
|
96 |
+
n_speakers=hps.data.n_speakers,
|
97 |
+
**hps.model).cuda(rank)
|
98 |
+
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
|
99 |
+
|
100 |
+
# load existing model
|
101 |
+
if hps.cont:
|
102 |
+
try:
|
103 |
+
_, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_latest.pth"), net_g, None)
|
104 |
+
_, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_latest.pth"), net_d, None)
|
105 |
+
global_step = (epoch_str - 1) * len(train_loader)
|
106 |
+
except:
|
107 |
+
print("Failed to find latest checkpoint, loading G_0.pth...")
|
108 |
+
if hps.train_with_pretrained_model:
|
109 |
+
print("Train with pretrained model...")
|
110 |
+
_, _, _, epoch_str = utils.load_checkpoint("./pretrained_models/G_0.pth", net_g, None)
|
111 |
+
_, _, _, epoch_str = utils.load_checkpoint("./pretrained_models/D_0.pth", net_d, None)
|
112 |
+
else:
|
113 |
+
print("Train without pretrained model...")
|
114 |
+
epoch_str = 1
|
115 |
+
global_step = 0
|
116 |
+
else:
|
117 |
+
if hps.train_with_pretrained_model:
|
118 |
+
print("Train with pretrained model...")
|
119 |
+
_, _, _, epoch_str = utils.load_checkpoint("./pretrained_models/G_0.pth", net_g, None)
|
120 |
+
_, _, _, epoch_str = utils.load_checkpoint("./pretrained_models/D_0.pth", net_d, None)
|
121 |
+
else:
|
122 |
+
print("Train without pretrained model...")
|
123 |
+
epoch_str = 1
|
124 |
+
global_step = 0
|
125 |
+
# freeze all other layers except speaker embedding
|
126 |
+
for p in net_g.parameters():
|
127 |
+
p.requires_grad = True
|
128 |
+
for p in net_d.parameters():
|
129 |
+
p.requires_grad = True
|
130 |
+
# for p in net_d.parameters():
|
131 |
+
# p.requires_grad = False
|
132 |
+
# net_g.emb_g.weight.requires_grad = True
|
133 |
+
optim_g = torch.optim.AdamW(
|
134 |
+
net_g.parameters(),
|
135 |
+
hps.train.learning_rate,
|
136 |
+
betas=hps.train.betas,
|
137 |
+
eps=hps.train.eps)
|
138 |
+
optim_d = torch.optim.AdamW(
|
139 |
+
net_d.parameters(),
|
140 |
+
hps.train.learning_rate,
|
141 |
+
betas=hps.train.betas,
|
142 |
+
eps=hps.train.eps)
|
143 |
+
# optim_d = None
|
144 |
+
net_g = DDP(net_g, device_ids=[rank])
|
145 |
+
net_d = DDP(net_d, device_ids=[rank])
|
146 |
+
|
147 |
+
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay)
|
148 |
+
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay)
|
149 |
+
|
150 |
+
scaler = GradScaler(enabled=hps.train.fp16_run)
|
151 |
+
|
152 |
+
for epoch in range(epoch_str, hps.train.epochs + 1):
|
153 |
+
if rank==0:
|
154 |
+
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, eval_loader], logger, [writer, writer_eval])
|
155 |
+
else:
|
156 |
+
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, None], None, None)
|
157 |
+
scheduler_g.step()
|
158 |
+
scheduler_d.step()
|
159 |
+
|
160 |
+
|
161 |
+
def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
|
162 |
+
net_g, net_d = nets
|
163 |
+
optim_g, optim_d = optims
|
164 |
+
scheduler_g, scheduler_d = schedulers
|
165 |
+
train_loader, eval_loader = loaders
|
166 |
+
if writers is not None:
|
167 |
+
writer, writer_eval = writers
|
168 |
+
|
169 |
+
# train_loader.batch_sampler.set_epoch(epoch)
|
170 |
+
global global_step
|
171 |
+
|
172 |
+
net_g.train()
|
173 |
+
net_d.train()
|
174 |
+
for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, speakers) in enumerate(tqdm(train_loader)):
|
175 |
+
x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(rank, non_blocking=True)
|
176 |
+
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True)
|
177 |
+
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True)
|
178 |
+
speakers = speakers.cuda(rank, non_blocking=True)
|
179 |
+
|
180 |
+
with autocast(enabled=hps.train.fp16_run):
|
181 |
+
y_hat, l_length, attn, ids_slice, x_mask, z_mask,\
|
182 |
+
(z, z_p, m_p, logs_p, m_q, logs_q) = net_g(x, x_lengths, spec, spec_lengths, speakers)
|
183 |
+
|
184 |
+
mel = spec_to_mel_torch(
|
185 |
+
spec,
|
186 |
+
hps.data.filter_length,
|
187 |
+
hps.data.n_mel_channels,
|
188 |
+
hps.data.sampling_rate,
|
189 |
+
hps.data.mel_fmin,
|
190 |
+
hps.data.mel_fmax)
|
191 |
+
y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
|
192 |
+
y_hat_mel = mel_spectrogram_torch(
|
193 |
+
y_hat.squeeze(1),
|
194 |
+
hps.data.filter_length,
|
195 |
+
hps.data.n_mel_channels,
|
196 |
+
hps.data.sampling_rate,
|
197 |
+
hps.data.hop_length,
|
198 |
+
hps.data.win_length,
|
199 |
+
hps.data.mel_fmin,
|
200 |
+
hps.data.mel_fmax
|
201 |
+
)
|
202 |
+
|
203 |
+
y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
|
204 |
+
|
205 |
+
# Discriminator
|
206 |
+
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
|
207 |
+
with autocast(enabled=False):
|
208 |
+
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
|
209 |
+
loss_disc_all = loss_disc
|
210 |
+
optim_d.zero_grad()
|
211 |
+
scaler.scale(loss_disc_all).backward()
|
212 |
+
scaler.unscale_(optim_d)
|
213 |
+
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
|
214 |
+
scaler.step(optim_d)
|
215 |
+
|
216 |
+
with autocast(enabled=hps.train.fp16_run):
|
217 |
+
# Generator
|
218 |
+
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
|
219 |
+
with autocast(enabled=False):
|
220 |
+
loss_dur = torch.sum(l_length.float())
|
221 |
+
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
|
222 |
+
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
|
223 |
+
|
224 |
+
loss_fm = feature_loss(fmap_r, fmap_g)
|
225 |
+
loss_gen, losses_gen = generator_loss(y_d_hat_g)
|
226 |
+
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
|
227 |
+
optim_g.zero_grad()
|
228 |
+
scaler.scale(loss_gen_all).backward()
|
229 |
+
scaler.unscale_(optim_g)
|
230 |
+
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
|
231 |
+
scaler.step(optim_g)
|
232 |
+
scaler.update()
|
233 |
+
|
234 |
+
if rank==0:
|
235 |
+
if global_step % hps.train.log_interval == 0:
|
236 |
+
lr = optim_g.param_groups[0]['lr']
|
237 |
+
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
|
238 |
+
logger.info('Train Epoch: {} [{:.0f}%]'.format(
|
239 |
+
epoch,
|
240 |
+
100. * batch_idx / len(train_loader)))
|
241 |
+
logger.info([x.item() for x in losses] + [global_step, lr])
|
242 |
+
|
243 |
+
scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr, "grad_norm_g": grad_norm_g}
|
244 |
+
scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/dur": loss_dur, "loss/g/kl": loss_kl})
|
245 |
+
|
246 |
+
scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
|
247 |
+
scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
|
248 |
+
scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
|
249 |
+
image_dict = {
|
250 |
+
"slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
|
251 |
+
"slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
|
252 |
+
"all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
|
253 |
+
"all/attn": utils.plot_alignment_to_numpy(attn[0,0].data.cpu().numpy())
|
254 |
+
}
|
255 |
+
utils.summarize(
|
256 |
+
writer=writer,
|
257 |
+
global_step=global_step,
|
258 |
+
images=image_dict,
|
259 |
+
scalars=scalar_dict)
|
260 |
+
|
261 |
+
if global_step % hps.train.eval_interval == 0:
|
262 |
+
evaluate(hps, net_g, eval_loader, writer_eval)
|
263 |
+
|
264 |
+
utils.save_checkpoint(net_g, None, hps.train.learning_rate, epoch,
|
265 |
+
os.path.join(hps.model_dir, "G_latest.pth".format(global_step)))
|
266 |
+
|
267 |
+
utils.save_checkpoint(net_d, None, hps.train.learning_rate, epoch,
|
268 |
+
os.path.join(hps.model_dir, "D_latest.pth".format(global_step)))
|
269 |
+
if hps.preserved > 0:
|
270 |
+
utils.save_checkpoint(net_g, None, hps.train.learning_rate, epoch,
|
271 |
+
os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
|
272 |
+
utils.save_checkpoint(net_d, None, hps.train.learning_rate, epoch,
|
273 |
+
os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
|
274 |
+
old_g = utils.oldest_checkpoint_path(hps.model_dir, "G_[0-9]*.pth",
|
275 |
+
preserved=hps.preserved) # Preserve 4 (default) historical checkpoints.
|
276 |
+
old_d = utils.oldest_checkpoint_path(hps.model_dir, "D_[0-9]*.pth", preserved=hps.preserved)
|
277 |
+
if os.path.exists(old_g):
|
278 |
+
print(f"remove {old_g}")
|
279 |
+
os.remove(old_g)
|
280 |
+
if os.path.exists(old_d):
|
281 |
+
print(f"remove {old_d}")
|
282 |
+
os.remove(old_d)
|
283 |
+
global_step += 1
|
284 |
+
if epoch > hps.max_epochs:
|
285 |
+
print("Maximum epoch reached, closing training...")
|
286 |
+
exit()
|
287 |
+
|
288 |
+
if rank == 0:
|
289 |
+
logger.info('====> Epoch: {}'.format(epoch))
|
290 |
+
|
291 |
+
|
292 |
+
def evaluate(hps, generator, eval_loader, writer_eval):
|
293 |
+
generator.eval()
|
294 |
+
with torch.no_grad():
|
295 |
+
for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, speakers) in enumerate(eval_loader):
|
296 |
+
x, x_lengths = x.cuda(0), x_lengths.cuda(0)
|
297 |
+
spec, spec_lengths = spec.cuda(0), spec_lengths.cuda(0)
|
298 |
+
y, y_lengths = y.cuda(0), y_lengths.cuda(0)
|
299 |
+
speakers = speakers.cuda(0)
|
300 |
+
|
301 |
+
# remove else
|
302 |
+
x = x[:1]
|
303 |
+
x_lengths = x_lengths[:1]
|
304 |
+
spec = spec[:1]
|
305 |
+
spec_lengths = spec_lengths[:1]
|
306 |
+
y = y[:1]
|
307 |
+
y_lengths = y_lengths[:1]
|
308 |
+
speakers = speakers[:1]
|
309 |
+
break
|
310 |
+
y_hat, attn, mask, *_ = generator.module.infer(x, x_lengths, speakers, max_len=1000)
|
311 |
+
y_hat_lengths = mask.sum([1,2]).long() * hps.data.hop_length
|
312 |
+
|
313 |
+
mel = spec_to_mel_torch(
|
314 |
+
spec,
|
315 |
+
hps.data.filter_length,
|
316 |
+
hps.data.n_mel_channels,
|
317 |
+
hps.data.sampling_rate,
|
318 |
+
hps.data.mel_fmin,
|
319 |
+
hps.data.mel_fmax)
|
320 |
+
y_hat_mel = mel_spectrogram_torch(
|
321 |
+
y_hat.squeeze(1).float(),
|
322 |
+
hps.data.filter_length,
|
323 |
+
hps.data.n_mel_channels,
|
324 |
+
hps.data.sampling_rate,
|
325 |
+
hps.data.hop_length,
|
326 |
+
hps.data.win_length,
|
327 |
+
hps.data.mel_fmin,
|
328 |
+
hps.data.mel_fmax
|
329 |
+
)
|
330 |
+
image_dict = {
|
331 |
+
"gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())
|
332 |
+
}
|
333 |
+
audio_dict = {
|
334 |
+
"gen/audio": y_hat[0,:,:y_hat_lengths[0]]
|
335 |
+
}
|
336 |
+
if global_step == 0:
|
337 |
+
image_dict.update({"gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())})
|
338 |
+
audio_dict.update({"gt/audio": y[0,:,:y_lengths[0]]})
|
339 |
+
|
340 |
+
utils.summarize(
|
341 |
+
writer=writer_eval,
|
342 |
+
global_step=global_step,
|
343 |
+
images=image_dict,
|
344 |
+
audios=audio_dict,
|
345 |
+
audio_sampling_rate=hps.data.sampling_rate
|
346 |
+
)
|
347 |
+
generator.train()
|
348 |
+
|
349 |
+
|
350 |
+
if __name__ == "__main__":
|
351 |
+
main()
|
losses.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.nn import functional as F
|
3 |
+
|
4 |
+
import commons
|
5 |
+
|
6 |
+
|
7 |
+
def feature_loss(fmap_r, fmap_g):
|
8 |
+
loss = 0
|
9 |
+
for dr, dg in zip(fmap_r, fmap_g):
|
10 |
+
for rl, gl in zip(dr, dg):
|
11 |
+
rl = rl.float().detach()
|
12 |
+
gl = gl.float()
|
13 |
+
loss += torch.mean(torch.abs(rl - gl))
|
14 |
+
|
15 |
+
return loss * 2
|
16 |
+
|
17 |
+
|
18 |
+
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
19 |
+
loss = 0
|
20 |
+
r_losses = []
|
21 |
+
g_losses = []
|
22 |
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
23 |
+
dr = dr.float()
|
24 |
+
dg = dg.float()
|
25 |
+
r_loss = torch.mean((1-dr)**2)
|
26 |
+
g_loss = torch.mean(dg**2)
|
27 |
+
loss += (r_loss + g_loss)
|
28 |
+
r_losses.append(r_loss.item())
|
29 |
+
g_losses.append(g_loss.item())
|
30 |
+
|
31 |
+
return loss, r_losses, g_losses
|
32 |
+
|
33 |
+
|
34 |
+
def generator_loss(disc_outputs):
|
35 |
+
loss = 0
|
36 |
+
gen_losses = []
|
37 |
+
for dg in disc_outputs:
|
38 |
+
dg = dg.float()
|
39 |
+
l = torch.mean((1-dg)**2)
|
40 |
+
gen_losses.append(l)
|
41 |
+
loss += l
|
42 |
+
|
43 |
+
return loss, gen_losses
|
44 |
+
|
45 |
+
|
46 |
+
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
|
47 |
+
"""
|
48 |
+
z_p, logs_q: [b, h, t_t]
|
49 |
+
m_p, logs_p: [b, h, t_t]
|
50 |
+
"""
|
51 |
+
z_p = z_p.float()
|
52 |
+
logs_q = logs_q.float()
|
53 |
+
m_p = m_p.float()
|
54 |
+
logs_p = logs_p.float()
|
55 |
+
z_mask = z_mask.float()
|
56 |
+
|
57 |
+
kl = logs_p - logs_q - 0.5
|
58 |
+
kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
|
59 |
+
kl = torch.sum(kl * z_mask)
|
60 |
+
l = kl / torch.sum(z_mask)
|
61 |
+
return l
|
mel_processing.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import torch.utils.data
|
8 |
+
import numpy as np
|
9 |
+
import librosa
|
10 |
+
import librosa.util as librosa_util
|
11 |
+
from librosa.util import normalize, pad_center, tiny
|
12 |
+
from scipy.signal import get_window
|
13 |
+
from scipy.io.wavfile import read
|
14 |
+
from librosa.filters import mel as librosa_mel_fn
|
15 |
+
|
16 |
+
MAX_WAV_VALUE = 32768.0
|
17 |
+
|
18 |
+
|
19 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
20 |
+
"""
|
21 |
+
PARAMS
|
22 |
+
------
|
23 |
+
C: compression factor
|
24 |
+
"""
|
25 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
26 |
+
|
27 |
+
|
28 |
+
def dynamic_range_decompression_torch(x, C=1):
|
29 |
+
"""
|
30 |
+
PARAMS
|
31 |
+
------
|
32 |
+
C: compression factor used to compress
|
33 |
+
"""
|
34 |
+
return torch.exp(x) / C
|
35 |
+
|
36 |
+
|
37 |
+
def spectral_normalize_torch(magnitudes):
|
38 |
+
output = dynamic_range_compression_torch(magnitudes)
|
39 |
+
return output
|
40 |
+
|
41 |
+
|
42 |
+
def spectral_de_normalize_torch(magnitudes):
|
43 |
+
output = dynamic_range_decompression_torch(magnitudes)
|
44 |
+
return output
|
45 |
+
|
46 |
+
|
47 |
+
mel_basis = {}
|
48 |
+
hann_window = {}
|
49 |
+
|
50 |
+
|
51 |
+
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
52 |
+
if torch.min(y) < -1.:
|
53 |
+
print('min value is ', torch.min(y))
|
54 |
+
if torch.max(y) > 1.:
|
55 |
+
print('max value is ', torch.max(y))
|
56 |
+
|
57 |
+
global hann_window
|
58 |
+
dtype_device = str(y.dtype) + '_' + str(y.device)
|
59 |
+
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
60 |
+
if wnsize_dtype_device not in hann_window:
|
61 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
62 |
+
|
63 |
+
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
64 |
+
y = y.squeeze(1)
|
65 |
+
|
66 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
67 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
68 |
+
|
69 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
70 |
+
return spec
|
71 |
+
|
72 |
+
|
73 |
+
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
74 |
+
global mel_basis
|
75 |
+
dtype_device = str(spec.dtype) + '_' + str(spec.device)
|
76 |
+
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
77 |
+
if fmax_dtype_device not in mel_basis:
|
78 |
+
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
79 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
|
80 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
81 |
+
spec = spectral_normalize_torch(spec)
|
82 |
+
return spec
|
83 |
+
|
84 |
+
|
85 |
+
def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
86 |
+
if torch.min(y) < -1.:
|
87 |
+
print('min value is ', torch.min(y))
|
88 |
+
if torch.max(y) > 1.:
|
89 |
+
print('max value is ', torch.max(y))
|
90 |
+
|
91 |
+
global mel_basis, hann_window
|
92 |
+
dtype_device = str(y.dtype) + '_' + str(y.device)
|
93 |
+
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
94 |
+
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
95 |
+
if fmax_dtype_device not in mel_basis:
|
96 |
+
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
|
97 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
|
98 |
+
if wnsize_dtype_device not in hann_window:
|
99 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
100 |
+
|
101 |
+
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
102 |
+
y = y.squeeze(1)
|
103 |
+
|
104 |
+
spec = torch.stft(y.float(), n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
105 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
106 |
+
|
107 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
108 |
+
|
109 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
110 |
+
spec = spectral_normalize_torch(spec)
|
111 |
+
|
112 |
+
return spec
|
models.py
ADDED
@@ -0,0 +1,533 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
import commons
|
8 |
+
import modules
|
9 |
+
import attentions
|
10 |
+
import monotonic_align
|
11 |
+
|
12 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
13 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
14 |
+
from commons import init_weights, get_padding
|
15 |
+
|
16 |
+
|
17 |
+
class StochasticDurationPredictor(nn.Module):
|
18 |
+
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
|
19 |
+
super().__init__()
|
20 |
+
filter_channels = in_channels # it needs to be removed from future version.
|
21 |
+
self.in_channels = in_channels
|
22 |
+
self.filter_channels = filter_channels
|
23 |
+
self.kernel_size = kernel_size
|
24 |
+
self.p_dropout = p_dropout
|
25 |
+
self.n_flows = n_flows
|
26 |
+
self.gin_channels = gin_channels
|
27 |
+
|
28 |
+
self.log_flow = modules.Log()
|
29 |
+
self.flows = nn.ModuleList()
|
30 |
+
self.flows.append(modules.ElementwiseAffine(2))
|
31 |
+
for i in range(n_flows):
|
32 |
+
self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
33 |
+
self.flows.append(modules.Flip())
|
34 |
+
|
35 |
+
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
36 |
+
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
37 |
+
self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
38 |
+
self.post_flows = nn.ModuleList()
|
39 |
+
self.post_flows.append(modules.ElementwiseAffine(2))
|
40 |
+
for i in range(4):
|
41 |
+
self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
42 |
+
self.post_flows.append(modules.Flip())
|
43 |
+
|
44 |
+
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
45 |
+
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
46 |
+
self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
47 |
+
if gin_channels != 0:
|
48 |
+
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
49 |
+
|
50 |
+
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
51 |
+
x = torch.detach(x)
|
52 |
+
x = self.pre(x)
|
53 |
+
if g is not None:
|
54 |
+
g = torch.detach(g)
|
55 |
+
x = x + self.cond(g)
|
56 |
+
x = self.convs(x, x_mask)
|
57 |
+
x = self.proj(x) * x_mask
|
58 |
+
|
59 |
+
if not reverse:
|
60 |
+
flows = self.flows
|
61 |
+
assert w is not None
|
62 |
+
|
63 |
+
logdet_tot_q = 0
|
64 |
+
h_w = self.post_pre(w)
|
65 |
+
h_w = self.post_convs(h_w, x_mask)
|
66 |
+
h_w = self.post_proj(h_w) * x_mask
|
67 |
+
e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
|
68 |
+
z_q = e_q
|
69 |
+
for flow in self.post_flows:
|
70 |
+
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
71 |
+
logdet_tot_q += logdet_q
|
72 |
+
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
73 |
+
u = torch.sigmoid(z_u) * x_mask
|
74 |
+
z0 = (w - u) * x_mask
|
75 |
+
logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1,2])
|
76 |
+
logq = torch.sum(-0.5 * (math.log(2*math.pi) + (e_q**2)) * x_mask, [1,2]) - logdet_tot_q
|
77 |
+
|
78 |
+
logdet_tot = 0
|
79 |
+
z0, logdet = self.log_flow(z0, x_mask)
|
80 |
+
logdet_tot += logdet
|
81 |
+
z = torch.cat([z0, z1], 1)
|
82 |
+
for flow in flows:
|
83 |
+
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
84 |
+
logdet_tot = logdet_tot + logdet
|
85 |
+
nll = torch.sum(0.5 * (math.log(2*math.pi) + (z**2)) * x_mask, [1,2]) - logdet_tot
|
86 |
+
return nll + logq # [b]
|
87 |
+
else:
|
88 |
+
flows = list(reversed(self.flows))
|
89 |
+
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
90 |
+
z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
|
91 |
+
for flow in flows:
|
92 |
+
z = flow(z, x_mask, g=x, reverse=reverse)
|
93 |
+
z0, z1 = torch.split(z, [1, 1], 1)
|
94 |
+
logw = z0
|
95 |
+
return logw
|
96 |
+
|
97 |
+
|
98 |
+
class DurationPredictor(nn.Module):
|
99 |
+
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
|
100 |
+
super().__init__()
|
101 |
+
|
102 |
+
self.in_channels = in_channels
|
103 |
+
self.filter_channels = filter_channels
|
104 |
+
self.kernel_size = kernel_size
|
105 |
+
self.p_dropout = p_dropout
|
106 |
+
self.gin_channels = gin_channels
|
107 |
+
|
108 |
+
self.drop = nn.Dropout(p_dropout)
|
109 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2)
|
110 |
+
self.norm_1 = modules.LayerNorm(filter_channels)
|
111 |
+
self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2)
|
112 |
+
self.norm_2 = modules.LayerNorm(filter_channels)
|
113 |
+
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
114 |
+
|
115 |
+
if gin_channels != 0:
|
116 |
+
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
117 |
+
|
118 |
+
def forward(self, x, x_mask, g=None):
|
119 |
+
x = torch.detach(x)
|
120 |
+
if g is not None:
|
121 |
+
g = torch.detach(g)
|
122 |
+
x = x + self.cond(g)
|
123 |
+
x = self.conv_1(x * x_mask)
|
124 |
+
x = torch.relu(x)
|
125 |
+
x = self.norm_1(x)
|
126 |
+
x = self.drop(x)
|
127 |
+
x = self.conv_2(x * x_mask)
|
128 |
+
x = torch.relu(x)
|
129 |
+
x = self.norm_2(x)
|
130 |
+
x = self.drop(x)
|
131 |
+
x = self.proj(x * x_mask)
|
132 |
+
return x * x_mask
|
133 |
+
|
134 |
+
|
135 |
+
class TextEncoder(nn.Module):
|
136 |
+
def __init__(self,
|
137 |
+
n_vocab,
|
138 |
+
out_channels,
|
139 |
+
hidden_channels,
|
140 |
+
filter_channels,
|
141 |
+
n_heads,
|
142 |
+
n_layers,
|
143 |
+
kernel_size,
|
144 |
+
p_dropout):
|
145 |
+
super().__init__()
|
146 |
+
self.n_vocab = n_vocab
|
147 |
+
self.out_channels = out_channels
|
148 |
+
self.hidden_channels = hidden_channels
|
149 |
+
self.filter_channels = filter_channels
|
150 |
+
self.n_heads = n_heads
|
151 |
+
self.n_layers = n_layers
|
152 |
+
self.kernel_size = kernel_size
|
153 |
+
self.p_dropout = p_dropout
|
154 |
+
|
155 |
+
self.emb = nn.Embedding(n_vocab, hidden_channels)
|
156 |
+
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
|
157 |
+
|
158 |
+
self.encoder = attentions.Encoder(
|
159 |
+
hidden_channels,
|
160 |
+
filter_channels,
|
161 |
+
n_heads,
|
162 |
+
n_layers,
|
163 |
+
kernel_size,
|
164 |
+
p_dropout)
|
165 |
+
self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
166 |
+
|
167 |
+
def forward(self, x, x_lengths):
|
168 |
+
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
|
169 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
170 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
171 |
+
|
172 |
+
x = self.encoder(x * x_mask, x_mask)
|
173 |
+
stats = self.proj(x) * x_mask
|
174 |
+
|
175 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
176 |
+
return x, m, logs, x_mask
|
177 |
+
|
178 |
+
|
179 |
+
class ResidualCouplingBlock(nn.Module):
|
180 |
+
def __init__(self,
|
181 |
+
channels,
|
182 |
+
hidden_channels,
|
183 |
+
kernel_size,
|
184 |
+
dilation_rate,
|
185 |
+
n_layers,
|
186 |
+
n_flows=4,
|
187 |
+
gin_channels=0):
|
188 |
+
super().__init__()
|
189 |
+
self.channels = channels
|
190 |
+
self.hidden_channels = hidden_channels
|
191 |
+
self.kernel_size = kernel_size
|
192 |
+
self.dilation_rate = dilation_rate
|
193 |
+
self.n_layers = n_layers
|
194 |
+
self.n_flows = n_flows
|
195 |
+
self.gin_channels = gin_channels
|
196 |
+
|
197 |
+
self.flows = nn.ModuleList()
|
198 |
+
for i in range(n_flows):
|
199 |
+
self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
|
200 |
+
self.flows.append(modules.Flip())
|
201 |
+
|
202 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
203 |
+
if not reverse:
|
204 |
+
for flow in self.flows:
|
205 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
206 |
+
else:
|
207 |
+
for flow in reversed(self.flows):
|
208 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
209 |
+
return x
|
210 |
+
|
211 |
+
|
212 |
+
class PosteriorEncoder(nn.Module):
|
213 |
+
def __init__(self,
|
214 |
+
in_channels,
|
215 |
+
out_channels,
|
216 |
+
hidden_channels,
|
217 |
+
kernel_size,
|
218 |
+
dilation_rate,
|
219 |
+
n_layers,
|
220 |
+
gin_channels=0):
|
221 |
+
super().__init__()
|
222 |
+
self.in_channels = in_channels
|
223 |
+
self.out_channels = out_channels
|
224 |
+
self.hidden_channels = hidden_channels
|
225 |
+
self.kernel_size = kernel_size
|
226 |
+
self.dilation_rate = dilation_rate
|
227 |
+
self.n_layers = n_layers
|
228 |
+
self.gin_channels = gin_channels
|
229 |
+
|
230 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
231 |
+
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
232 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
233 |
+
|
234 |
+
def forward(self, x, x_lengths, g=None):
|
235 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
236 |
+
x = self.pre(x) * x_mask
|
237 |
+
x = self.enc(x, x_mask, g=g)
|
238 |
+
stats = self.proj(x) * x_mask
|
239 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
240 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
241 |
+
return z, m, logs, x_mask
|
242 |
+
|
243 |
+
|
244 |
+
class Generator(torch.nn.Module):
|
245 |
+
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
|
246 |
+
super(Generator, self).__init__()
|
247 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
248 |
+
self.num_upsamples = len(upsample_rates)
|
249 |
+
self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
|
250 |
+
resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
|
251 |
+
|
252 |
+
self.ups = nn.ModuleList()
|
253 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
254 |
+
self.ups.append(weight_norm(
|
255 |
+
ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
|
256 |
+
k, u, padding=(k-u)//2)))
|
257 |
+
|
258 |
+
self.resblocks = nn.ModuleList()
|
259 |
+
for i in range(len(self.ups)):
|
260 |
+
ch = upsample_initial_channel//(2**(i+1))
|
261 |
+
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
262 |
+
self.resblocks.append(resblock(ch, k, d))
|
263 |
+
|
264 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
265 |
+
self.ups.apply(init_weights)
|
266 |
+
|
267 |
+
if gin_channels != 0:
|
268 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
269 |
+
|
270 |
+
def forward(self, x, g=None):
|
271 |
+
x = self.conv_pre(x)
|
272 |
+
if g is not None:
|
273 |
+
x = x + self.cond(g)
|
274 |
+
|
275 |
+
for i in range(self.num_upsamples):
|
276 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
277 |
+
x = self.ups[i](x)
|
278 |
+
xs = None
|
279 |
+
for j in range(self.num_kernels):
|
280 |
+
if xs is None:
|
281 |
+
xs = self.resblocks[i*self.num_kernels+j](x)
|
282 |
+
else:
|
283 |
+
xs += self.resblocks[i*self.num_kernels+j](x)
|
284 |
+
x = xs / self.num_kernels
|
285 |
+
x = F.leaky_relu(x)
|
286 |
+
x = self.conv_post(x)
|
287 |
+
x = torch.tanh(x)
|
288 |
+
|
289 |
+
return x
|
290 |
+
|
291 |
+
def remove_weight_norm(self):
|
292 |
+
print('Removing weight norm...')
|
293 |
+
for l in self.ups:
|
294 |
+
remove_weight_norm(l)
|
295 |
+
for l in self.resblocks:
|
296 |
+
l.remove_weight_norm()
|
297 |
+
|
298 |
+
|
299 |
+
class DiscriminatorP(torch.nn.Module):
|
300 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
301 |
+
super(DiscriminatorP, self).__init__()
|
302 |
+
self.period = period
|
303 |
+
self.use_spectral_norm = use_spectral_norm
|
304 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
305 |
+
self.convs = nn.ModuleList([
|
306 |
+
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
307 |
+
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
308 |
+
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
309 |
+
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
310 |
+
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
|
311 |
+
])
|
312 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
313 |
+
|
314 |
+
def forward(self, x):
|
315 |
+
fmap = []
|
316 |
+
|
317 |
+
# 1d to 2d
|
318 |
+
b, c, t = x.shape
|
319 |
+
if t % self.period != 0: # pad first
|
320 |
+
n_pad = self.period - (t % self.period)
|
321 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
322 |
+
t = t + n_pad
|
323 |
+
x = x.view(b, c, t // self.period, self.period)
|
324 |
+
|
325 |
+
for l in self.convs:
|
326 |
+
x = l(x)
|
327 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
328 |
+
fmap.append(x)
|
329 |
+
x = self.conv_post(x)
|
330 |
+
fmap.append(x)
|
331 |
+
x = torch.flatten(x, 1, -1)
|
332 |
+
|
333 |
+
return x, fmap
|
334 |
+
|
335 |
+
|
336 |
+
class DiscriminatorS(torch.nn.Module):
|
337 |
+
def __init__(self, use_spectral_norm=False):
|
338 |
+
super(DiscriminatorS, self).__init__()
|
339 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
340 |
+
self.convs = nn.ModuleList([
|
341 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
342 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
343 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
344 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
345 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
346 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
347 |
+
])
|
348 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
349 |
+
|
350 |
+
def forward(self, x):
|
351 |
+
fmap = []
|
352 |
+
|
353 |
+
for l in self.convs:
|
354 |
+
x = l(x)
|
355 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
356 |
+
fmap.append(x)
|
357 |
+
x = self.conv_post(x)
|
358 |
+
fmap.append(x)
|
359 |
+
x = torch.flatten(x, 1, -1)
|
360 |
+
|
361 |
+
return x, fmap
|
362 |
+
|
363 |
+
|
364 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
365 |
+
def __init__(self, use_spectral_norm=False):
|
366 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
367 |
+
periods = [2,3,5,7,11]
|
368 |
+
|
369 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
370 |
+
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
|
371 |
+
self.discriminators = nn.ModuleList(discs)
|
372 |
+
|
373 |
+
def forward(self, y, y_hat):
|
374 |
+
y_d_rs = []
|
375 |
+
y_d_gs = []
|
376 |
+
fmap_rs = []
|
377 |
+
fmap_gs = []
|
378 |
+
for i, d in enumerate(self.discriminators):
|
379 |
+
y_d_r, fmap_r = d(y)
|
380 |
+
y_d_g, fmap_g = d(y_hat)
|
381 |
+
y_d_rs.append(y_d_r)
|
382 |
+
y_d_gs.append(y_d_g)
|
383 |
+
fmap_rs.append(fmap_r)
|
384 |
+
fmap_gs.append(fmap_g)
|
385 |
+
|
386 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
387 |
+
|
388 |
+
|
389 |
+
|
390 |
+
class SynthesizerTrn(nn.Module):
|
391 |
+
"""
|
392 |
+
Synthesizer for Training
|
393 |
+
"""
|
394 |
+
|
395 |
+
def __init__(self,
|
396 |
+
n_vocab,
|
397 |
+
spec_channels,
|
398 |
+
segment_size,
|
399 |
+
inter_channels,
|
400 |
+
hidden_channels,
|
401 |
+
filter_channels,
|
402 |
+
n_heads,
|
403 |
+
n_layers,
|
404 |
+
kernel_size,
|
405 |
+
p_dropout,
|
406 |
+
resblock,
|
407 |
+
resblock_kernel_sizes,
|
408 |
+
resblock_dilation_sizes,
|
409 |
+
upsample_rates,
|
410 |
+
upsample_initial_channel,
|
411 |
+
upsample_kernel_sizes,
|
412 |
+
n_speakers=0,
|
413 |
+
gin_channels=0,
|
414 |
+
use_sdp=True,
|
415 |
+
**kwargs):
|
416 |
+
|
417 |
+
super().__init__()
|
418 |
+
self.n_vocab = n_vocab
|
419 |
+
self.spec_channels = spec_channels
|
420 |
+
self.inter_channels = inter_channels
|
421 |
+
self.hidden_channels = hidden_channels
|
422 |
+
self.filter_channels = filter_channels
|
423 |
+
self.n_heads = n_heads
|
424 |
+
self.n_layers = n_layers
|
425 |
+
self.kernel_size = kernel_size
|
426 |
+
self.p_dropout = p_dropout
|
427 |
+
self.resblock = resblock
|
428 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
429 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
430 |
+
self.upsample_rates = upsample_rates
|
431 |
+
self.upsample_initial_channel = upsample_initial_channel
|
432 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
433 |
+
self.segment_size = segment_size
|
434 |
+
self.n_speakers = n_speakers
|
435 |
+
self.gin_channels = gin_channels
|
436 |
+
|
437 |
+
self.use_sdp = use_sdp
|
438 |
+
|
439 |
+
self.enc_p = TextEncoder(n_vocab,
|
440 |
+
inter_channels,
|
441 |
+
hidden_channels,
|
442 |
+
filter_channels,
|
443 |
+
n_heads,
|
444 |
+
n_layers,
|
445 |
+
kernel_size,
|
446 |
+
p_dropout)
|
447 |
+
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
|
448 |
+
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
|
449 |
+
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
450 |
+
|
451 |
+
if use_sdp:
|
452 |
+
self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
|
453 |
+
else:
|
454 |
+
self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
|
455 |
+
|
456 |
+
if n_speakers >= 1:
|
457 |
+
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
458 |
+
|
459 |
+
def forward(self, x, x_lengths, y, y_lengths, sid=None):
|
460 |
+
|
461 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
462 |
+
if self.n_speakers > 0:
|
463 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
464 |
+
else:
|
465 |
+
g = None
|
466 |
+
|
467 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
468 |
+
z_p = self.flow(z, y_mask, g=g)
|
469 |
+
|
470 |
+
with torch.no_grad():
|
471 |
+
# negative cross-entropy
|
472 |
+
s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
|
473 |
+
neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True) # [b, 1, t_s]
|
474 |
+
neg_cent2 = torch.matmul(-0.5 * (z_p ** 2).transpose(1, 2), s_p_sq_r) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
475 |
+
neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
476 |
+
neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) # [b, 1, t_s]
|
477 |
+
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
|
478 |
+
|
479 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
480 |
+
attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
|
481 |
+
|
482 |
+
w = attn.sum(2)
|
483 |
+
if self.use_sdp:
|
484 |
+
l_length = self.dp(x, x_mask, w, g=g)
|
485 |
+
l_length = l_length / torch.sum(x_mask)
|
486 |
+
else:
|
487 |
+
logw_ = torch.log(w + 1e-6) * x_mask
|
488 |
+
logw = self.dp(x, x_mask, g=g)
|
489 |
+
l_length = torch.sum((logw - logw_)**2, [1,2]) / torch.sum(x_mask) # for averaging
|
490 |
+
|
491 |
+
# expand prior
|
492 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
|
493 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
|
494 |
+
|
495 |
+
z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
|
496 |
+
o = self.dec(z_slice, g=g)
|
497 |
+
return o, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
498 |
+
|
499 |
+
def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
|
500 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
501 |
+
if self.n_speakers > 0:
|
502 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
503 |
+
else:
|
504 |
+
g = None
|
505 |
+
|
506 |
+
if self.use_sdp:
|
507 |
+
logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
|
508 |
+
else:
|
509 |
+
logw = self.dp(x, x_mask, g=g)
|
510 |
+
w = torch.exp(logw) * x_mask * length_scale
|
511 |
+
w_ceil = torch.ceil(w)
|
512 |
+
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
513 |
+
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
|
514 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
515 |
+
attn = commons.generate_path(w_ceil, attn_mask)
|
516 |
+
|
517 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
518 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
519 |
+
|
520 |
+
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
521 |
+
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
522 |
+
o = self.dec((z * y_mask)[:,:,:max_len], g=g)
|
523 |
+
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
524 |
+
|
525 |
+
def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
|
526 |
+
assert self.n_speakers > 0, "n_speakers have to be larger than 0."
|
527 |
+
g_src = self.emb_g(sid_src).unsqueeze(-1)
|
528 |
+
g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
|
529 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
|
530 |
+
z_p = self.flow(z, y_mask, g=g_src)
|
531 |
+
z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
|
532 |
+
o_hat = self.dec(z_hat * y_mask, g=g_tgt)
|
533 |
+
return o_hat, y_mask, (z, z_p, z_hat)
|
models_infer.py
ADDED
@@ -0,0 +1,402 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
|
6 |
+
import commons
|
7 |
+
import modules
|
8 |
+
import attentions
|
9 |
+
|
10 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
11 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
12 |
+
from commons import init_weights, get_padding
|
13 |
+
|
14 |
+
|
15 |
+
class StochasticDurationPredictor(nn.Module):
|
16 |
+
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
|
17 |
+
super().__init__()
|
18 |
+
filter_channels = in_channels # it needs to be removed from future version.
|
19 |
+
self.in_channels = in_channels
|
20 |
+
self.filter_channels = filter_channels
|
21 |
+
self.kernel_size = kernel_size
|
22 |
+
self.p_dropout = p_dropout
|
23 |
+
self.n_flows = n_flows
|
24 |
+
self.gin_channels = gin_channels
|
25 |
+
|
26 |
+
self.log_flow = modules.Log()
|
27 |
+
self.flows = nn.ModuleList()
|
28 |
+
self.flows.append(modules.ElementwiseAffine(2))
|
29 |
+
for i in range(n_flows):
|
30 |
+
self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
31 |
+
self.flows.append(modules.Flip())
|
32 |
+
|
33 |
+
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
34 |
+
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
35 |
+
self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
36 |
+
self.post_flows = nn.ModuleList()
|
37 |
+
self.post_flows.append(modules.ElementwiseAffine(2))
|
38 |
+
for i in range(4):
|
39 |
+
self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
40 |
+
self.post_flows.append(modules.Flip())
|
41 |
+
|
42 |
+
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
43 |
+
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
44 |
+
self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
45 |
+
if gin_channels != 0:
|
46 |
+
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
47 |
+
|
48 |
+
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
49 |
+
x = torch.detach(x)
|
50 |
+
x = self.pre(x)
|
51 |
+
if g is not None:
|
52 |
+
g = torch.detach(g)
|
53 |
+
x = x + self.cond(g)
|
54 |
+
x = self.convs(x, x_mask)
|
55 |
+
x = self.proj(x) * x_mask
|
56 |
+
|
57 |
+
if not reverse:
|
58 |
+
flows = self.flows
|
59 |
+
assert w is not None
|
60 |
+
|
61 |
+
logdet_tot_q = 0
|
62 |
+
h_w = self.post_pre(w)
|
63 |
+
h_w = self.post_convs(h_w, x_mask)
|
64 |
+
h_w = self.post_proj(h_w) * x_mask
|
65 |
+
e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
|
66 |
+
z_q = e_q
|
67 |
+
for flow in self.post_flows:
|
68 |
+
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
69 |
+
logdet_tot_q += logdet_q
|
70 |
+
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
71 |
+
u = torch.sigmoid(z_u) * x_mask
|
72 |
+
z0 = (w - u) * x_mask
|
73 |
+
logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1,2])
|
74 |
+
logq = torch.sum(-0.5 * (math.log(2*math.pi) + (e_q**2)) * x_mask, [1,2]) - logdet_tot_q
|
75 |
+
|
76 |
+
logdet_tot = 0
|
77 |
+
z0, logdet = self.log_flow(z0, x_mask)
|
78 |
+
logdet_tot += logdet
|
79 |
+
z = torch.cat([z0, z1], 1)
|
80 |
+
for flow in flows:
|
81 |
+
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
82 |
+
logdet_tot = logdet_tot + logdet
|
83 |
+
nll = torch.sum(0.5 * (math.log(2*math.pi) + (z**2)) * x_mask, [1,2]) - logdet_tot
|
84 |
+
return nll + logq # [b]
|
85 |
+
else:
|
86 |
+
flows = list(reversed(self.flows))
|
87 |
+
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
88 |
+
z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
|
89 |
+
for flow in flows:
|
90 |
+
z = flow(z, x_mask, g=x, reverse=reverse)
|
91 |
+
z0, z1 = torch.split(z, [1, 1], 1)
|
92 |
+
logw = z0
|
93 |
+
return logw
|
94 |
+
|
95 |
+
|
96 |
+
class DurationPredictor(nn.Module):
|
97 |
+
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
|
98 |
+
super().__init__()
|
99 |
+
|
100 |
+
self.in_channels = in_channels
|
101 |
+
self.filter_channels = filter_channels
|
102 |
+
self.kernel_size = kernel_size
|
103 |
+
self.p_dropout = p_dropout
|
104 |
+
self.gin_channels = gin_channels
|
105 |
+
|
106 |
+
self.drop = nn.Dropout(p_dropout)
|
107 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2)
|
108 |
+
self.norm_1 = modules.LayerNorm(filter_channels)
|
109 |
+
self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2)
|
110 |
+
self.norm_2 = modules.LayerNorm(filter_channels)
|
111 |
+
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
112 |
+
|
113 |
+
if gin_channels != 0:
|
114 |
+
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
115 |
+
|
116 |
+
def forward(self, x, x_mask, g=None):
|
117 |
+
x = torch.detach(x)
|
118 |
+
if g is not None:
|
119 |
+
g = torch.detach(g)
|
120 |
+
x = x + self.cond(g)
|
121 |
+
x = self.conv_1(x * x_mask)
|
122 |
+
x = torch.relu(x)
|
123 |
+
x = self.norm_1(x)
|
124 |
+
x = self.drop(x)
|
125 |
+
x = self.conv_2(x * x_mask)
|
126 |
+
x = torch.relu(x)
|
127 |
+
x = self.norm_2(x)
|
128 |
+
x = self.drop(x)
|
129 |
+
x = self.proj(x * x_mask)
|
130 |
+
return x * x_mask
|
131 |
+
|
132 |
+
|
133 |
+
class TextEncoder(nn.Module):
|
134 |
+
def __init__(self,
|
135 |
+
n_vocab,
|
136 |
+
out_channels,
|
137 |
+
hidden_channels,
|
138 |
+
filter_channels,
|
139 |
+
n_heads,
|
140 |
+
n_layers,
|
141 |
+
kernel_size,
|
142 |
+
p_dropout):
|
143 |
+
super().__init__()
|
144 |
+
self.n_vocab = n_vocab
|
145 |
+
self.out_channels = out_channels
|
146 |
+
self.hidden_channels = hidden_channels
|
147 |
+
self.filter_channels = filter_channels
|
148 |
+
self.n_heads = n_heads
|
149 |
+
self.n_layers = n_layers
|
150 |
+
self.kernel_size = kernel_size
|
151 |
+
self.p_dropout = p_dropout
|
152 |
+
|
153 |
+
self.emb = nn.Embedding(n_vocab, hidden_channels)
|
154 |
+
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
|
155 |
+
|
156 |
+
self.encoder = attentions.Encoder(
|
157 |
+
hidden_channels,
|
158 |
+
filter_channels,
|
159 |
+
n_heads,
|
160 |
+
n_layers,
|
161 |
+
kernel_size,
|
162 |
+
p_dropout)
|
163 |
+
self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
164 |
+
|
165 |
+
def forward(self, x, x_lengths):
|
166 |
+
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
|
167 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
168 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
169 |
+
|
170 |
+
x = self.encoder(x * x_mask, x_mask)
|
171 |
+
stats = self.proj(x) * x_mask
|
172 |
+
|
173 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
174 |
+
return x, m, logs, x_mask
|
175 |
+
|
176 |
+
|
177 |
+
class ResidualCouplingBlock(nn.Module):
|
178 |
+
def __init__(self,
|
179 |
+
channels,
|
180 |
+
hidden_channels,
|
181 |
+
kernel_size,
|
182 |
+
dilation_rate,
|
183 |
+
n_layers,
|
184 |
+
n_flows=4,
|
185 |
+
gin_channels=0):
|
186 |
+
super().__init__()
|
187 |
+
self.channels = channels
|
188 |
+
self.hidden_channels = hidden_channels
|
189 |
+
self.kernel_size = kernel_size
|
190 |
+
self.dilation_rate = dilation_rate
|
191 |
+
self.n_layers = n_layers
|
192 |
+
self.n_flows = n_flows
|
193 |
+
self.gin_channels = gin_channels
|
194 |
+
|
195 |
+
self.flows = nn.ModuleList()
|
196 |
+
for i in range(n_flows):
|
197 |
+
self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
|
198 |
+
self.flows.append(modules.Flip())
|
199 |
+
|
200 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
201 |
+
if not reverse:
|
202 |
+
for flow in self.flows:
|
203 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
204 |
+
else:
|
205 |
+
for flow in reversed(self.flows):
|
206 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
207 |
+
return x
|
208 |
+
|
209 |
+
|
210 |
+
class PosteriorEncoder(nn.Module):
|
211 |
+
def __init__(self,
|
212 |
+
in_channels,
|
213 |
+
out_channels,
|
214 |
+
hidden_channels,
|
215 |
+
kernel_size,
|
216 |
+
dilation_rate,
|
217 |
+
n_layers,
|
218 |
+
gin_channels=0):
|
219 |
+
super().__init__()
|
220 |
+
self.in_channels = in_channels
|
221 |
+
self.out_channels = out_channels
|
222 |
+
self.hidden_channels = hidden_channels
|
223 |
+
self.kernel_size = kernel_size
|
224 |
+
self.dilation_rate = dilation_rate
|
225 |
+
self.n_layers = n_layers
|
226 |
+
self.gin_channels = gin_channels
|
227 |
+
|
228 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
229 |
+
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
230 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
231 |
+
|
232 |
+
def forward(self, x, x_lengths, g=None):
|
233 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
234 |
+
x = self.pre(x) * x_mask
|
235 |
+
x = self.enc(x, x_mask, g=g)
|
236 |
+
stats = self.proj(x) * x_mask
|
237 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
238 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
239 |
+
return z, m, logs, x_mask
|
240 |
+
|
241 |
+
|
242 |
+
class Generator(torch.nn.Module):
|
243 |
+
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
|
244 |
+
super(Generator, self).__init__()
|
245 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
246 |
+
self.num_upsamples = len(upsample_rates)
|
247 |
+
self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
|
248 |
+
resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
|
249 |
+
|
250 |
+
self.ups = nn.ModuleList()
|
251 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
252 |
+
self.ups.append(weight_norm(
|
253 |
+
ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
|
254 |
+
k, u, padding=(k-u)//2)))
|
255 |
+
|
256 |
+
self.resblocks = nn.ModuleList()
|
257 |
+
for i in range(len(self.ups)):
|
258 |
+
ch = upsample_initial_channel//(2**(i+1))
|
259 |
+
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
260 |
+
self.resblocks.append(resblock(ch, k, d))
|
261 |
+
|
262 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
263 |
+
self.ups.apply(init_weights)
|
264 |
+
|
265 |
+
if gin_channels != 0:
|
266 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
267 |
+
|
268 |
+
def forward(self, x, g=None):
|
269 |
+
x = self.conv_pre(x)
|
270 |
+
if g is not None:
|
271 |
+
x = x + self.cond(g)
|
272 |
+
|
273 |
+
for i in range(self.num_upsamples):
|
274 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
275 |
+
x = self.ups[i](x)
|
276 |
+
xs = None
|
277 |
+
for j in range(self.num_kernels):
|
278 |
+
if xs is None:
|
279 |
+
xs = self.resblocks[i*self.num_kernels+j](x)
|
280 |
+
else:
|
281 |
+
xs += self.resblocks[i*self.num_kernels+j](x)
|
282 |
+
x = xs / self.num_kernels
|
283 |
+
x = F.leaky_relu(x)
|
284 |
+
x = self.conv_post(x)
|
285 |
+
x = torch.tanh(x)
|
286 |
+
|
287 |
+
return x
|
288 |
+
|
289 |
+
def remove_weight_norm(self):
|
290 |
+
print('Removing weight norm...')
|
291 |
+
for l in self.ups:
|
292 |
+
remove_weight_norm(l)
|
293 |
+
for l in self.resblocks:
|
294 |
+
l.remove_weight_norm()
|
295 |
+
|
296 |
+
|
297 |
+
|
298 |
+
class SynthesizerTrn(nn.Module):
|
299 |
+
"""
|
300 |
+
Synthesizer for Training
|
301 |
+
"""
|
302 |
+
|
303 |
+
def __init__(self,
|
304 |
+
n_vocab,
|
305 |
+
spec_channels,
|
306 |
+
segment_size,
|
307 |
+
inter_channels,
|
308 |
+
hidden_channels,
|
309 |
+
filter_channels,
|
310 |
+
n_heads,
|
311 |
+
n_layers,
|
312 |
+
kernel_size,
|
313 |
+
p_dropout,
|
314 |
+
resblock,
|
315 |
+
resblock_kernel_sizes,
|
316 |
+
resblock_dilation_sizes,
|
317 |
+
upsample_rates,
|
318 |
+
upsample_initial_channel,
|
319 |
+
upsample_kernel_sizes,
|
320 |
+
n_speakers=0,
|
321 |
+
gin_channels=0,
|
322 |
+
use_sdp=True,
|
323 |
+
**kwargs):
|
324 |
+
|
325 |
+
super().__init__()
|
326 |
+
self.n_vocab = n_vocab
|
327 |
+
self.spec_channels = spec_channels
|
328 |
+
self.inter_channels = inter_channels
|
329 |
+
self.hidden_channels = hidden_channels
|
330 |
+
self.filter_channels = filter_channels
|
331 |
+
self.n_heads = n_heads
|
332 |
+
self.n_layers = n_layers
|
333 |
+
self.kernel_size = kernel_size
|
334 |
+
self.p_dropout = p_dropout
|
335 |
+
self.resblock = resblock
|
336 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
337 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
338 |
+
self.upsample_rates = upsample_rates
|
339 |
+
self.upsample_initial_channel = upsample_initial_channel
|
340 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
341 |
+
self.segment_size = segment_size
|
342 |
+
self.n_speakers = n_speakers
|
343 |
+
self.gin_channels = gin_channels
|
344 |
+
|
345 |
+
self.use_sdp = use_sdp
|
346 |
+
|
347 |
+
self.enc_p = TextEncoder(n_vocab,
|
348 |
+
inter_channels,
|
349 |
+
hidden_channels,
|
350 |
+
filter_channels,
|
351 |
+
n_heads,
|
352 |
+
n_layers,
|
353 |
+
kernel_size,
|
354 |
+
p_dropout)
|
355 |
+
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
|
356 |
+
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
|
357 |
+
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
358 |
+
|
359 |
+
if use_sdp:
|
360 |
+
self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
|
361 |
+
else:
|
362 |
+
self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
|
363 |
+
|
364 |
+
if n_speakers > 1:
|
365 |
+
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
366 |
+
|
367 |
+
def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
|
368 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
369 |
+
if self.n_speakers > 0:
|
370 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
371 |
+
else:
|
372 |
+
g = None
|
373 |
+
|
374 |
+
if self.use_sdp:
|
375 |
+
logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
|
376 |
+
else:
|
377 |
+
logw = self.dp(x, x_mask, g=g)
|
378 |
+
w = torch.exp(logw) * x_mask * length_scale
|
379 |
+
w_ceil = torch.ceil(w)
|
380 |
+
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
381 |
+
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
|
382 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
383 |
+
attn = commons.generate_path(w_ceil, attn_mask)
|
384 |
+
|
385 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
386 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
387 |
+
|
388 |
+
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
389 |
+
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
390 |
+
o = self.dec((z * y_mask)[:,:,:max_len], g=g)
|
391 |
+
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
392 |
+
|
393 |
+
def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
|
394 |
+
assert self.n_speakers > 0, "n_speakers have to be larger than 0."
|
395 |
+
g_src = self.emb_g(sid_src).unsqueeze(-1)
|
396 |
+
g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
|
397 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
|
398 |
+
z_p = self.flow(z, y_mask, g=g_src)
|
399 |
+
z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
|
400 |
+
o_hat = self.dec(z_hat * y_mask, g=g_tgt)
|
401 |
+
return o_hat, y_mask, (z, z_p, z_hat)
|
402 |
+
|
modules.py
ADDED
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import scipy
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import functional as F
|
8 |
+
|
9 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
10 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
11 |
+
|
12 |
+
import commons
|
13 |
+
from commons import init_weights, get_padding
|
14 |
+
from transforms import piecewise_rational_quadratic_transform
|
15 |
+
|
16 |
+
|
17 |
+
LRELU_SLOPE = 0.1
|
18 |
+
|
19 |
+
|
20 |
+
class LayerNorm(nn.Module):
|
21 |
+
def __init__(self, channels, eps=1e-5):
|
22 |
+
super().__init__()
|
23 |
+
self.channels = channels
|
24 |
+
self.eps = eps
|
25 |
+
|
26 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
27 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
28 |
+
|
29 |
+
def forward(self, x):
|
30 |
+
x = x.transpose(1, -1)
|
31 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
32 |
+
return x.transpose(1, -1)
|
33 |
+
|
34 |
+
|
35 |
+
class ConvReluNorm(nn.Module):
|
36 |
+
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
|
37 |
+
super().__init__()
|
38 |
+
self.in_channels = in_channels
|
39 |
+
self.hidden_channels = hidden_channels
|
40 |
+
self.out_channels = out_channels
|
41 |
+
self.kernel_size = kernel_size
|
42 |
+
self.n_layers = n_layers
|
43 |
+
self.p_dropout = p_dropout
|
44 |
+
assert n_layers > 1, "Number of layers should be larger than 0."
|
45 |
+
|
46 |
+
self.conv_layers = nn.ModuleList()
|
47 |
+
self.norm_layers = nn.ModuleList()
|
48 |
+
self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
49 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
50 |
+
self.relu_drop = nn.Sequential(
|
51 |
+
nn.ReLU(),
|
52 |
+
nn.Dropout(p_dropout))
|
53 |
+
for _ in range(n_layers-1):
|
54 |
+
self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
55 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
56 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
57 |
+
self.proj.weight.data.zero_()
|
58 |
+
self.proj.bias.data.zero_()
|
59 |
+
|
60 |
+
def forward(self, x, x_mask):
|
61 |
+
x_org = x
|
62 |
+
for i in range(self.n_layers):
|
63 |
+
x = self.conv_layers[i](x * x_mask)
|
64 |
+
x = self.norm_layers[i](x)
|
65 |
+
x = self.relu_drop(x)
|
66 |
+
x = x_org + self.proj(x)
|
67 |
+
return x * x_mask
|
68 |
+
|
69 |
+
|
70 |
+
class DDSConv(nn.Module):
|
71 |
+
"""
|
72 |
+
Dialted and Depth-Separable Convolution
|
73 |
+
"""
|
74 |
+
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
|
75 |
+
super().__init__()
|
76 |
+
self.channels = channels
|
77 |
+
self.kernel_size = kernel_size
|
78 |
+
self.n_layers = n_layers
|
79 |
+
self.p_dropout = p_dropout
|
80 |
+
|
81 |
+
self.drop = nn.Dropout(p_dropout)
|
82 |
+
self.convs_sep = nn.ModuleList()
|
83 |
+
self.convs_1x1 = nn.ModuleList()
|
84 |
+
self.norms_1 = nn.ModuleList()
|
85 |
+
self.norms_2 = nn.ModuleList()
|
86 |
+
for i in range(n_layers):
|
87 |
+
dilation = kernel_size ** i
|
88 |
+
padding = (kernel_size * dilation - dilation) // 2
|
89 |
+
self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
|
90 |
+
groups=channels, dilation=dilation, padding=padding
|
91 |
+
))
|
92 |
+
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
93 |
+
self.norms_1.append(LayerNorm(channels))
|
94 |
+
self.norms_2.append(LayerNorm(channels))
|
95 |
+
|
96 |
+
def forward(self, x, x_mask, g=None):
|
97 |
+
if g is not None:
|
98 |
+
x = x + g
|
99 |
+
for i in range(self.n_layers):
|
100 |
+
y = self.convs_sep[i](x * x_mask)
|
101 |
+
y = self.norms_1[i](y)
|
102 |
+
y = F.gelu(y)
|
103 |
+
y = self.convs_1x1[i](y)
|
104 |
+
y = self.norms_2[i](y)
|
105 |
+
y = F.gelu(y)
|
106 |
+
y = self.drop(y)
|
107 |
+
x = x + y
|
108 |
+
return x * x_mask
|
109 |
+
|
110 |
+
|
111 |
+
class WN(torch.nn.Module):
|
112 |
+
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
|
113 |
+
super(WN, self).__init__()
|
114 |
+
assert(kernel_size % 2 == 1)
|
115 |
+
self.hidden_channels =hidden_channels
|
116 |
+
self.kernel_size = kernel_size,
|
117 |
+
self.dilation_rate = dilation_rate
|
118 |
+
self.n_layers = n_layers
|
119 |
+
self.gin_channels = gin_channels
|
120 |
+
self.p_dropout = p_dropout
|
121 |
+
|
122 |
+
self.in_layers = torch.nn.ModuleList()
|
123 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
124 |
+
self.drop = nn.Dropout(p_dropout)
|
125 |
+
|
126 |
+
if gin_channels != 0:
|
127 |
+
cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
|
128 |
+
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
|
129 |
+
|
130 |
+
for i in range(n_layers):
|
131 |
+
dilation = dilation_rate ** i
|
132 |
+
padding = int((kernel_size * dilation - dilation) / 2)
|
133 |
+
in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
|
134 |
+
dilation=dilation, padding=padding)
|
135 |
+
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
|
136 |
+
self.in_layers.append(in_layer)
|
137 |
+
|
138 |
+
# last one is not necessary
|
139 |
+
if i < n_layers - 1:
|
140 |
+
res_skip_channels = 2 * hidden_channels
|
141 |
+
else:
|
142 |
+
res_skip_channels = hidden_channels
|
143 |
+
|
144 |
+
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
145 |
+
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
|
146 |
+
self.res_skip_layers.append(res_skip_layer)
|
147 |
+
|
148 |
+
def forward(self, x, x_mask, g=None, **kwargs):
|
149 |
+
output = torch.zeros_like(x)
|
150 |
+
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
151 |
+
|
152 |
+
if g is not None:
|
153 |
+
g = self.cond_layer(g)
|
154 |
+
|
155 |
+
for i in range(self.n_layers):
|
156 |
+
x_in = self.in_layers[i](x)
|
157 |
+
if g is not None:
|
158 |
+
cond_offset = i * 2 * self.hidden_channels
|
159 |
+
g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
|
160 |
+
else:
|
161 |
+
g_l = torch.zeros_like(x_in)
|
162 |
+
|
163 |
+
acts = commons.fused_add_tanh_sigmoid_multiply(
|
164 |
+
x_in,
|
165 |
+
g_l,
|
166 |
+
n_channels_tensor)
|
167 |
+
acts = self.drop(acts)
|
168 |
+
|
169 |
+
res_skip_acts = self.res_skip_layers[i](acts)
|
170 |
+
if i < self.n_layers - 1:
|
171 |
+
res_acts = res_skip_acts[:,:self.hidden_channels,:]
|
172 |
+
x = (x + res_acts) * x_mask
|
173 |
+
output = output + res_skip_acts[:,self.hidden_channels:,:]
|
174 |
+
else:
|
175 |
+
output = output + res_skip_acts
|
176 |
+
return output * x_mask
|
177 |
+
|
178 |
+
def remove_weight_norm(self):
|
179 |
+
if self.gin_channels != 0:
|
180 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
181 |
+
for l in self.in_layers:
|
182 |
+
torch.nn.utils.remove_weight_norm(l)
|
183 |
+
for l in self.res_skip_layers:
|
184 |
+
torch.nn.utils.remove_weight_norm(l)
|
185 |
+
|
186 |
+
|
187 |
+
class ResBlock1(torch.nn.Module):
|
188 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
189 |
+
super(ResBlock1, self).__init__()
|
190 |
+
self.convs1 = nn.ModuleList([
|
191 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
192 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
193 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
194 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
195 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
196 |
+
padding=get_padding(kernel_size, dilation[2])))
|
197 |
+
])
|
198 |
+
self.convs1.apply(init_weights)
|
199 |
+
|
200 |
+
self.convs2 = nn.ModuleList([
|
201 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
202 |
+
padding=get_padding(kernel_size, 1))),
|
203 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
204 |
+
padding=get_padding(kernel_size, 1))),
|
205 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
206 |
+
padding=get_padding(kernel_size, 1)))
|
207 |
+
])
|
208 |
+
self.convs2.apply(init_weights)
|
209 |
+
|
210 |
+
def forward(self, x, x_mask=None):
|
211 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
212 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
213 |
+
if x_mask is not None:
|
214 |
+
xt = xt * x_mask
|
215 |
+
xt = c1(xt)
|
216 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
217 |
+
if x_mask is not None:
|
218 |
+
xt = xt * x_mask
|
219 |
+
xt = c2(xt)
|
220 |
+
x = xt + x
|
221 |
+
if x_mask is not None:
|
222 |
+
x = x * x_mask
|
223 |
+
return x
|
224 |
+
|
225 |
+
def remove_weight_norm(self):
|
226 |
+
for l in self.convs1:
|
227 |
+
remove_weight_norm(l)
|
228 |
+
for l in self.convs2:
|
229 |
+
remove_weight_norm(l)
|
230 |
+
|
231 |
+
|
232 |
+
class ResBlock2(torch.nn.Module):
|
233 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
234 |
+
super(ResBlock2, self).__init__()
|
235 |
+
self.convs = nn.ModuleList([
|
236 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
237 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
238 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
239 |
+
padding=get_padding(kernel_size, dilation[1])))
|
240 |
+
])
|
241 |
+
self.convs.apply(init_weights)
|
242 |
+
|
243 |
+
def forward(self, x, x_mask=None):
|
244 |
+
for c in self.convs:
|
245 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
246 |
+
if x_mask is not None:
|
247 |
+
xt = xt * x_mask
|
248 |
+
xt = c(xt)
|
249 |
+
x = xt + x
|
250 |
+
if x_mask is not None:
|
251 |
+
x = x * x_mask
|
252 |
+
return x
|
253 |
+
|
254 |
+
def remove_weight_norm(self):
|
255 |
+
for l in self.convs:
|
256 |
+
remove_weight_norm(l)
|
257 |
+
|
258 |
+
|
259 |
+
class Log(nn.Module):
|
260 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
261 |
+
if not reverse:
|
262 |
+
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
263 |
+
logdet = torch.sum(-y, [1, 2])
|
264 |
+
return y, logdet
|
265 |
+
else:
|
266 |
+
x = torch.exp(x) * x_mask
|
267 |
+
return x
|
268 |
+
|
269 |
+
|
270 |
+
class Flip(nn.Module):
|
271 |
+
def forward(self, x, *args, reverse=False, **kwargs):
|
272 |
+
x = torch.flip(x, [1])
|
273 |
+
if not reverse:
|
274 |
+
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
275 |
+
return x, logdet
|
276 |
+
else:
|
277 |
+
return x
|
278 |
+
|
279 |
+
|
280 |
+
class ElementwiseAffine(nn.Module):
|
281 |
+
def __init__(self, channels):
|
282 |
+
super().__init__()
|
283 |
+
self.channels = channels
|
284 |
+
self.m = nn.Parameter(torch.zeros(channels,1))
|
285 |
+
self.logs = nn.Parameter(torch.zeros(channels,1))
|
286 |
+
|
287 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
288 |
+
if not reverse:
|
289 |
+
y = self.m + torch.exp(self.logs) * x
|
290 |
+
y = y * x_mask
|
291 |
+
logdet = torch.sum(self.logs * x_mask, [1,2])
|
292 |
+
return y, logdet
|
293 |
+
else:
|
294 |
+
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
295 |
+
return x
|
296 |
+
|
297 |
+
|
298 |
+
class ResidualCouplingLayer(nn.Module):
|
299 |
+
def __init__(self,
|
300 |
+
channels,
|
301 |
+
hidden_channels,
|
302 |
+
kernel_size,
|
303 |
+
dilation_rate,
|
304 |
+
n_layers,
|
305 |
+
p_dropout=0,
|
306 |
+
gin_channels=0,
|
307 |
+
mean_only=False):
|
308 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
309 |
+
super().__init__()
|
310 |
+
self.channels = channels
|
311 |
+
self.hidden_channels = hidden_channels
|
312 |
+
self.kernel_size = kernel_size
|
313 |
+
self.dilation_rate = dilation_rate
|
314 |
+
self.n_layers = n_layers
|
315 |
+
self.half_channels = channels // 2
|
316 |
+
self.mean_only = mean_only
|
317 |
+
|
318 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
319 |
+
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
|
320 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
321 |
+
self.post.weight.data.zero_()
|
322 |
+
self.post.bias.data.zero_()
|
323 |
+
|
324 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
325 |
+
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
|
326 |
+
h = self.pre(x0) * x_mask
|
327 |
+
h = self.enc(h, x_mask, g=g)
|
328 |
+
stats = self.post(h) * x_mask
|
329 |
+
if not self.mean_only:
|
330 |
+
m, logs = torch.split(stats, [self.half_channels]*2, 1)
|
331 |
+
else:
|
332 |
+
m = stats
|
333 |
+
logs = torch.zeros_like(m)
|
334 |
+
|
335 |
+
if not reverse:
|
336 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
337 |
+
x = torch.cat([x0, x1], 1)
|
338 |
+
logdet = torch.sum(logs, [1,2])
|
339 |
+
return x, logdet
|
340 |
+
else:
|
341 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
342 |
+
x = torch.cat([x0, x1], 1)
|
343 |
+
return x
|
344 |
+
|
345 |
+
|
346 |
+
class ConvFlow(nn.Module):
|
347 |
+
def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
|
348 |
+
super().__init__()
|
349 |
+
self.in_channels = in_channels
|
350 |
+
self.filter_channels = filter_channels
|
351 |
+
self.kernel_size = kernel_size
|
352 |
+
self.n_layers = n_layers
|
353 |
+
self.num_bins = num_bins
|
354 |
+
self.tail_bound = tail_bound
|
355 |
+
self.half_channels = in_channels // 2
|
356 |
+
|
357 |
+
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
358 |
+
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
|
359 |
+
self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
|
360 |
+
self.proj.weight.data.zero_()
|
361 |
+
self.proj.bias.data.zero_()
|
362 |
+
|
363 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
364 |
+
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
|
365 |
+
h = self.pre(x0)
|
366 |
+
h = self.convs(h, x_mask, g=g)
|
367 |
+
h = self.proj(h) * x_mask
|
368 |
+
|
369 |
+
b, c, t = x0.shape
|
370 |
+
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
371 |
+
|
372 |
+
unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
|
373 |
+
unnormalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels)
|
374 |
+
unnormalized_derivatives = h[..., 2 * self.num_bins:]
|
375 |
+
|
376 |
+
x1, logabsdet = piecewise_rational_quadratic_transform(x1,
|
377 |
+
unnormalized_widths,
|
378 |
+
unnormalized_heights,
|
379 |
+
unnormalized_derivatives,
|
380 |
+
inverse=reverse,
|
381 |
+
tails='linear',
|
382 |
+
tail_bound=self.tail_bound
|
383 |
+
)
|
384 |
+
|
385 |
+
x = torch.cat([x0, x1], 1) * x_mask
|
386 |
+
logdet = torch.sum(logabsdet * x_mask, [1,2])
|
387 |
+
if not reverse:
|
388 |
+
return x, logdet
|
389 |
+
else:
|
390 |
+
return x
|
monotonic_align/__init__.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
from .monotonic_align.core import maximum_path_c
|
4 |
+
|
5 |
+
|
6 |
+
def maximum_path(neg_cent, mask):
|
7 |
+
""" Cython optimized version.
|
8 |
+
neg_cent: [b, t_t, t_s]
|
9 |
+
mask: [b, t_t, t_s]
|
10 |
+
"""
|
11 |
+
device = neg_cent.device
|
12 |
+
dtype = neg_cent.dtype
|
13 |
+
neg_cent = neg_cent.data.cpu().numpy().astype(np.float32)
|
14 |
+
path = np.zeros(neg_cent.shape, dtype=np.int32)
|
15 |
+
|
16 |
+
t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(np.int32)
|
17 |
+
t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(np.int32)
|
18 |
+
maximum_path_c(path, neg_cent, t_t_max, t_s_max)
|
19 |
+
return torch.from_numpy(path).to(device=device, dtype=dtype)
|
monotonic_align/build/lib.linux-x86_64-cpython-310/monotonic_align/core.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (173 kB). View file
|
|
monotonic_align/build/lib.linux-x86_64-cpython-311/monotonic_align/core.cpython-311-x86_64-linux-gnu.so
ADDED
Binary file (181 kB). View file
|
|
monotonic_align/build/temp.linux-x86_64-cpython-310/core.o
ADDED
Binary file (230 kB). View file
|
|
monotonic_align/build/temp.linux-x86_64-cpython-311/core.o
ADDED
Binary file (246 kB). View file
|
|
monotonic_align/core.c
ADDED
The diff for this file is too large to render.
See raw diff
|
|
monotonic_align/core.pyx
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
cimport cython
|
2 |
+
from cython.parallel import prange
|
3 |
+
|
4 |
+
|
5 |
+
@cython.boundscheck(False)
|
6 |
+
@cython.wraparound(False)
|
7 |
+
cdef void maximum_path_each(int[:,::1] path, float[:,::1] value, int t_y, int t_x, float max_neg_val=-1e9) nogil:
|
8 |
+
cdef int x
|
9 |
+
cdef int y
|
10 |
+
cdef float v_prev
|
11 |
+
cdef float v_cur
|
12 |
+
cdef float tmp
|
13 |
+
cdef int index = t_x - 1
|
14 |
+
|
15 |
+
for y in range(t_y):
|
16 |
+
for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)):
|
17 |
+
if x == y:
|
18 |
+
v_cur = max_neg_val
|
19 |
+
else:
|
20 |
+
v_cur = value[y-1, x]
|
21 |
+
if x == 0:
|
22 |
+
if y == 0:
|
23 |
+
v_prev = 0.
|
24 |
+
else:
|
25 |
+
v_prev = max_neg_val
|
26 |
+
else:
|
27 |
+
v_prev = value[y-1, x-1]
|
28 |
+
value[y, x] += max(v_prev, v_cur)
|
29 |
+
|
30 |
+
for y in range(t_y - 1, -1, -1):
|
31 |
+
path[y, index] = 1
|
32 |
+
if index != 0 and (index == y or value[y-1, index] < value[y-1, index-1]):
|
33 |
+
index = index - 1
|
34 |
+
|
35 |
+
|
36 |
+
@cython.boundscheck(False)
|
37 |
+
@cython.wraparound(False)
|
38 |
+
cpdef void maximum_path_c(int[:,:,::1] paths, float[:,:,::1] values, int[::1] t_ys, int[::1] t_xs) nogil:
|
39 |
+
cdef int b = paths.shape[0]
|
40 |
+
cdef int i
|
41 |
+
for i in prange(b, nogil=True):
|
42 |
+
maximum_path_each(paths[i], values[i], t_ys[i], t_xs[i])
|
monotonic_align/monotonic_align/core.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (173 kB). View file
|
|
monotonic_align/monotonic_align/core.cpython-311-x86_64-linux-gnu.so
ADDED
Binary file (181 kB). View file
|
|
monotonic_align/setup.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from distutils.core import setup
|
2 |
+
from Cython.Build import cythonize
|
3 |
+
import numpy
|
4 |
+
|
5 |
+
setup(
|
6 |
+
name = 'monotonic_align',
|
7 |
+
ext_modules = cythonize("core.pyx"),
|
8 |
+
include_dirs=[numpy.get_include()]
|
9 |
+
)
|
preprocess_v2.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
import json
|
4 |
+
if __name__ == "__main__":
|
5 |
+
parser = argparse.ArgumentParser()
|
6 |
+
parser.add_argument("--add_auxiliary_data", type=bool, help="Whether to add extra data as fine-tuning helper")
|
7 |
+
parser.add_argument("--languages", default="CJE")
|
8 |
+
args = parser.parse_args()
|
9 |
+
if args.languages == "CJE":
|
10 |
+
langs = ["[ZH]", "[JA]", "[EN]"]
|
11 |
+
elif args.languages == "CJ":
|
12 |
+
langs = ["[ZH]", "[JA]"]
|
13 |
+
elif args.languages == "C":
|
14 |
+
langs = ["[ZH]"]
|
15 |
+
elif args.languages == "J":
|
16 |
+
langs = ["[JA]"]
|
17 |
+
new_annos = []
|
18 |
+
# Source 1: transcribed short audios
|
19 |
+
if os.path.exists("short_character_anno.txt"):
|
20 |
+
with open("short_character_anno.txt", 'r', encoding='utf-8') as f:
|
21 |
+
short_character_anno = f.readlines()
|
22 |
+
new_annos += short_character_anno
|
23 |
+
# Source 2: transcribed long audio segments
|
24 |
+
if os.path.exists("./long_character_anno.txt"):
|
25 |
+
with open("./long_character_anno.txt", 'r', encoding='utf-8') as f:
|
26 |
+
long_character_anno = f.readlines()
|
27 |
+
new_annos += long_character_anno
|
28 |
+
|
29 |
+
# Get all speaker names
|
30 |
+
speakers = []
|
31 |
+
for line in new_annos:
|
32 |
+
path, speaker, text = line.split("|")
|
33 |
+
if speaker not in speakers:
|
34 |
+
speakers.append(speaker)
|
35 |
+
assert (len(speakers) != 0), "No audio file found. Please check your uploaded file structure."
|
36 |
+
# Source 3 (Optional): sampled audios as extra training helpers
|
37 |
+
if args.add_auxiliary_data:
|
38 |
+
with open("./sampled_audio4ft.txt", 'r', encoding='utf-8') as f:
|
39 |
+
old_annos = f.readlines()
|
40 |
+
# filter old_annos according to supported languages
|
41 |
+
filtered_old_annos = []
|
42 |
+
for line in old_annos:
|
43 |
+
for lang in langs:
|
44 |
+
if lang in line:
|
45 |
+
filtered_old_annos.append(line)
|
46 |
+
old_annos = filtered_old_annos
|
47 |
+
for line in old_annos:
|
48 |
+
path, speaker, text = line.split("|")
|
49 |
+
if speaker not in speakers:
|
50 |
+
speakers.append(speaker)
|
51 |
+
num_old_voices = len(old_annos)
|
52 |
+
num_new_voices = len(new_annos)
|
53 |
+
# STEP 1: balance number of new & old voices
|
54 |
+
cc_duplicate = num_old_voices // num_new_voices
|
55 |
+
if cc_duplicate == 0:
|
56 |
+
cc_duplicate = 1
|
57 |
+
|
58 |
+
|
59 |
+
# STEP 2: modify config file
|
60 |
+
with open("./configs/finetune_speaker.json", 'r', encoding='utf-8') as f:
|
61 |
+
hps = json.load(f)
|
62 |
+
|
63 |
+
# assign ids to new speakers
|
64 |
+
speaker2id = {}
|
65 |
+
for i, speaker in enumerate(speakers):
|
66 |
+
speaker2id[speaker] = i
|
67 |
+
# modify n_speakers
|
68 |
+
hps['data']["n_speakers"] = len(speakers)
|
69 |
+
# overwrite speaker names
|
70 |
+
hps['speakers'] = speaker2id
|
71 |
+
hps['train']['log_interval'] = 10
|
72 |
+
hps['train']['eval_interval'] = 100
|
73 |
+
hps['train']['batch_size'] = 16
|
74 |
+
hps['data']['training_files'] = "final_annotation_train.txt"
|
75 |
+
hps['data']['validation_files'] = "final_annotation_val.txt"
|
76 |
+
# save modified config
|
77 |
+
with open("./configs/modified_finetune_speaker.json", 'w', encoding='utf-8') as f:
|
78 |
+
json.dump(hps, f, indent=2)
|
79 |
+
|
80 |
+
# STEP 3: clean annotations, replace speaker names with assigned speaker IDs
|
81 |
+
import text
|
82 |
+
cleaned_new_annos = []
|
83 |
+
for i, line in enumerate(new_annos):
|
84 |
+
path, speaker, txt = line.split("|")
|
85 |
+
if len(txt) > 150:
|
86 |
+
continue
|
87 |
+
cleaned_text = text._clean_text(txt, hps['data']['text_cleaners'])
|
88 |
+
cleaned_text += "\n" if not cleaned_text.endswith("\n") else ""
|
89 |
+
cleaned_new_annos.append(path + "|" + str(speaker2id[speaker]) + "|" + cleaned_text)
|
90 |
+
cleaned_old_annos = []
|
91 |
+
for i, line in enumerate(old_annos):
|
92 |
+
path, speaker, txt = line.split("|")
|
93 |
+
if len(txt) > 150:
|
94 |
+
continue
|
95 |
+
cleaned_text = text._clean_text(txt, hps['data']['text_cleaners'])
|
96 |
+
cleaned_text += "\n" if not cleaned_text.endswith("\n") else ""
|
97 |
+
cleaned_old_annos.append(path + "|" + str(speaker2id[speaker]) + "|" + cleaned_text)
|
98 |
+
# merge with old annotation
|
99 |
+
final_annos = cleaned_old_annos + cc_duplicate * cleaned_new_annos
|
100 |
+
# save annotation file
|
101 |
+
with open("./final_annotation_train.txt", 'w', encoding='utf-8') as f:
|
102 |
+
for line in final_annos:
|
103 |
+
f.write(line)
|
104 |
+
# save annotation file for validation
|
105 |
+
with open("./final_annotation_val.txt", 'w', encoding='utf-8') as f:
|
106 |
+
for line in cleaned_new_annos:
|
107 |
+
f.write(line)
|
108 |
+
print("finished")
|
109 |
+
else:
|
110 |
+
# Do not add extra helper data
|
111 |
+
# STEP 1: modify config file
|
112 |
+
with open("./configs/amitaro_jp_base.json", 'r', encoding='utf-8') as f:
|
113 |
+
hps = json.load(f)
|
114 |
+
|
115 |
+
# assign ids to new speakers
|
116 |
+
speaker2id = {}
|
117 |
+
for i, speaker in enumerate(speakers):
|
118 |
+
speaker2id[speaker] = i
|
119 |
+
# modify n_speakers
|
120 |
+
hps['data']["n_speakers"] = len(speakers)
|
121 |
+
# overwrite speaker names
|
122 |
+
hps['speakers'] = speaker2id
|
123 |
+
hps['train']['log_interval'] = 10
|
124 |
+
hps['train']['eval_interval'] = 100
|
125 |
+
hps['train']['batch_size'] = 16
|
126 |
+
hps['data']['training_files'] = "final_annotation_train.txt"
|
127 |
+
hps['data']['validation_files'] = "final_annotation_val.txt"
|
128 |
+
# save modified config
|
129 |
+
with open("./configs/modified_finetune_speaker.json", 'w', encoding='utf-8') as f:
|
130 |
+
json.dump(hps, f, indent=2)
|
131 |
+
|
132 |
+
# STEP 2: clean annotations, replace speaker names with assigned speaker IDs
|
133 |
+
import text
|
134 |
+
|
135 |
+
cleaned_new_annos = []
|
136 |
+
for i, line in enumerate(new_annos):
|
137 |
+
path, speaker, txt = line.split("|")
|
138 |
+
if len(txt) > 150:
|
139 |
+
continue
|
140 |
+
cleaned_text = text._clean_text(txt, hps['data']['text_cleaners']).replace("[ZH]", "")
|
141 |
+
cleaned_text += "\n" if not cleaned_text.endswith("\n") else ""
|
142 |
+
cleaned_new_annos.append(path + "|" + str(speaker2id[speaker]) + "|" + cleaned_text)
|
143 |
+
|
144 |
+
final_annos = cleaned_new_annos
|
145 |
+
# save annotation file
|
146 |
+
with open("./final_annotation_train.txt", 'w', encoding='utf-8') as f:
|
147 |
+
for line in final_annos:
|
148 |
+
f.write(line)
|
149 |
+
# save annotation file for validation
|
150 |
+
with open("./final_annotation_val.txt", 'w', encoding='utf-8') as f:
|
151 |
+
for line in cleaned_new_annos:
|
152 |
+
f.write(line)
|
153 |
+
print("finished")
|
requirements.txt
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pydantic<2
|
2 |
+
Cython==0.29.21
|
3 |
+
librosa==0.9.2
|
4 |
+
matplotlib==3.3.1
|
5 |
+
numpy
|
6 |
+
scipy
|
7 |
+
tensorboard
|
8 |
+
torch
|
9 |
+
torchvision
|
10 |
+
torchaudio
|
11 |
+
unidecode
|
12 |
+
jamo
|
13 |
+
pypinyin
|
14 |
+
jieba
|
15 |
+
protobuf
|
16 |
+
cn2an
|
17 |
+
inflect
|
18 |
+
eng_to_ipa
|
19 |
+
ko_pron
|
20 |
+
indic_transliteration==2.3.37
|
21 |
+
num_thai==0.0.5
|
22 |
+
opencc==1.1.1
|
23 |
+
demucs
|
24 |
+
openai-whisper
|
25 |
+
gradio
|
26 |
+
openai
|
27 |
+
pyopenjtalk
|
scripts/denoise_audio.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import torchaudio
|
4 |
+
raw_audio_dir = "./raw_audio/"
|
5 |
+
denoise_audio_dir = "./denoised_audio/"
|
6 |
+
filelist = list(os.walk(raw_audio_dir))[0][2]
|
7 |
+
# 2023/4/21: Get the target sampling rate
|
8 |
+
with open("./configs/finetune_speaker.json", 'r', encoding='utf-8') as f:
|
9 |
+
hps = json.load(f)
|
10 |
+
target_sr = hps['data']['sampling_rate']
|
11 |
+
for file in filelist:
|
12 |
+
if file.endswith(".wav"):
|
13 |
+
os.system(f"demucs --two-stems=vocals {raw_audio_dir}{file}")
|
14 |
+
for file in filelist:
|
15 |
+
file = file.replace(".wav", "")
|
16 |
+
wav, sr = torchaudio.load(f"./separated/htdemucs/{file}/vocals.wav", frame_offset=0, num_frames=-1, normalize=True,
|
17 |
+
channels_first=True)
|
18 |
+
# merge two channels into one
|
19 |
+
wav = wav.mean(dim=0).unsqueeze(0)
|
20 |
+
if sr != target_sr:
|
21 |
+
wav = torchaudio.transforms.Resample(orig_freq=sr, new_freq=target_sr)(wav)
|
22 |
+
torchaudio.save(denoise_audio_dir + file + ".wav", wav, target_sr, channels_first=True)
|
scripts/download_model.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from google.colab import files
|
2 |
+
files.download("./G_latest.pth")
|
3 |
+
files.download("./finetune_speaker.json")
|
4 |
+
files.download("./moegoe_config.json")
|
scripts/download_video.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import shutil
|
4 |
+
from concurrent.futures import ThreadPoolExecutor
|
5 |
+
from google.colab import files
|
6 |
+
|
7 |
+
basepath = os.getcwd()
|
8 |
+
uploaded = files.upload() # 上传文件
|
9 |
+
for filename in uploaded.keys():
|
10 |
+
assert (filename.endswith(".txt")), "speaker-videolink info could only be .txt file!"
|
11 |
+
shutil.move(os.path.join(basepath, filename), os.path.join("./speaker_links.txt"))
|
12 |
+
|
13 |
+
|
14 |
+
def generate_infos():
|
15 |
+
infos = []
|
16 |
+
with open("./speaker_links.txt", 'r', encoding='utf-8') as f:
|
17 |
+
lines = f.readlines()
|
18 |
+
for line in lines:
|
19 |
+
line = line.replace("\n", "").replace(" ", "")
|
20 |
+
if line == "":
|
21 |
+
continue
|
22 |
+
speaker, link = line.split("|")
|
23 |
+
filename = speaker + "_" + str(random.randint(0, 1000000))
|
24 |
+
infos.append({"link": link, "filename": filename})
|
25 |
+
return infos
|
26 |
+
|
27 |
+
|
28 |
+
def download_video(info):
|
29 |
+
link = info["link"]
|
30 |
+
filename = info["filename"]
|
31 |
+
os.system(f"youtube-dl -f 0 {link} -o ./video_data/{filename}.mp4 --no-check-certificate")
|
32 |
+
|
33 |
+
|
34 |
+
if __name__ == "__main__":
|
35 |
+
infos = generate_infos()
|
36 |
+
with ThreadPoolExecutor(max_workers=os.cpu_count()) as executor:
|
37 |
+
executor.map(download_video, infos)
|
scripts/long_audio_transcribe.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from moviepy.editor import AudioFileClip
|
2 |
+
import whisper
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
import torchaudio
|
6 |
+
import librosa
|
7 |
+
import torch
|
8 |
+
import argparse
|
9 |
+
parent_dir = "./denoised_audio/"
|
10 |
+
filelist = list(os.walk(parent_dir))[0][2]
|
11 |
+
if __name__ == "__main__":
|
12 |
+
parser = argparse.ArgumentParser()
|
13 |
+
parser.add_argument("--languages", default="CJE")
|
14 |
+
parser.add_argument("--whisper_size", default="medium")
|
15 |
+
args = parser.parse_args()
|
16 |
+
if args.languages == "CJE":
|
17 |
+
lang2token = {
|
18 |
+
'zh': "[ZH]",
|
19 |
+
'ja': "[JA]",
|
20 |
+
"en": "[EN]",
|
21 |
+
}
|
22 |
+
elif args.languages == "CJ":
|
23 |
+
lang2token = {
|
24 |
+
'zh': "[ZH]",
|
25 |
+
'ja': "[JA]",
|
26 |
+
}
|
27 |
+
elif args.languages == "C":
|
28 |
+
lang2token = {
|
29 |
+
'zh': "[ZH]",
|
30 |
+
}
|
31 |
+
assert(torch.cuda.is_available()), "Please enable GPU in order to run Whisper!"
|
32 |
+
with open("./configs/finetune_speaker.json", 'r', encoding='utf-8') as f:
|
33 |
+
hps = json.load(f)
|
34 |
+
target_sr = hps['data']['sampling_rate']
|
35 |
+
model = whisper.load_model(args.whisper_size)
|
36 |
+
speaker_annos = []
|
37 |
+
for file in filelist:
|
38 |
+
print(f"transcribing {parent_dir + file}...\n")
|
39 |
+
options = dict(beam_size=5, best_of=5)
|
40 |
+
transcribe_options = dict(task="transcribe", **options)
|
41 |
+
result = model.transcribe(parent_dir + file, word_timestamps=True, **transcribe_options)
|
42 |
+
segments = result["segments"]
|
43 |
+
# result = model.transcribe(parent_dir + file)
|
44 |
+
lang = result['language']
|
45 |
+
if result['language'] not in list(lang2token.keys()):
|
46 |
+
print(f"{lang} not supported, ignoring...\n")
|
47 |
+
continue
|
48 |
+
# segment audio based on segment results
|
49 |
+
character_name = file.rstrip(".wav").split("_")[0]
|
50 |
+
code = file.rstrip(".wav").split("_")[1]
|
51 |
+
if not os.path.exists("./segmented_character_voice/" + character_name):
|
52 |
+
os.mkdir("./segmented_character_voice/" + character_name)
|
53 |
+
wav, sr = torchaudio.load(parent_dir + file, frame_offset=0, num_frames=-1, normalize=True,
|
54 |
+
channels_first=True)
|
55 |
+
|
56 |
+
for i, seg in enumerate(result['segments']):
|
57 |
+
start_time = seg['start']
|
58 |
+
end_time = seg['end']
|
59 |
+
text = seg['text']
|
60 |
+
text = lang2token[lang] + text.replace("\n", "") + lang2token[lang]
|
61 |
+
text = text + "\n"
|
62 |
+
wav_seg = wav[:, int(start_time*sr):int(end_time*sr)]
|
63 |
+
wav_seg_name = f"{character_name}_{code}_{i}.wav"
|
64 |
+
savepth = "./segmented_character_voice/" + character_name + "/" + wav_seg_name
|
65 |
+
speaker_annos.append(savepth + "|" + character_name + "|" + text)
|
66 |
+
print(f"Transcribed segment: {speaker_annos[-1]}")
|
67 |
+
# trimmed_wav_seg = librosa.effects.trim(wav_seg.squeeze().numpy())
|
68 |
+
# trimmed_wav_seg = torch.tensor(trimmed_wav_seg[0]).unsqueeze(0)
|
69 |
+
torchaudio.save(savepth, wav_seg, target_sr, channels_first=True)
|
70 |
+
if len(speaker_annos) == 0:
|
71 |
+
print("Warning: no long audios & videos found, this IS expected if you have only uploaded short audios")
|
72 |
+
print("this IS NOT expected if you have uploaded any long audios, videos or video links. Please check your file structure or make sure your audio/video language is supported.")
|
73 |
+
with open("./long_character_anno.txt", 'w', encoding='utf-8') as f:
|
74 |
+
for line in speaker_annos:
|
75 |
+
f.write(line)
|
scripts/rearrange_speaker.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import argparse
|
3 |
+
import json
|
4 |
+
|
5 |
+
if __name__ == "__main__":
|
6 |
+
parser = argparse.ArgumentParser()
|
7 |
+
parser.add_argument("--model_dir", type=str, default="./OUTPUT_MODEL/G_latest.pth")
|
8 |
+
parser.add_argument("--config_dir", type=str, default="./configs/modified_finetune_speaker.json")
|
9 |
+
args = parser.parse_args()
|
10 |
+
|
11 |
+
model_sd = torch.load(args.model_dir, map_location='cpu')
|
12 |
+
with open(args.config_dir, 'r', encoding='utf-8') as f:
|
13 |
+
hps = json.load(f)
|
14 |
+
|
15 |
+
valid_speakers = list(hps['speakers'].keys())
|
16 |
+
if hps['data']['n_speakers'] > len(valid_speakers):
|
17 |
+
new_emb_g = torch.zeros([len(valid_speakers), 256])
|
18 |
+
old_emb_g = model_sd['model']['emb_g.weight']
|
19 |
+
for i, speaker in enumerate(valid_speakers):
|
20 |
+
new_emb_g[i, :] = old_emb_g[hps['speakers'][speaker], :]
|
21 |
+
hps['speakers'][speaker] = i
|
22 |
+
hps['data']['n_speakers'] = len(valid_speakers)
|
23 |
+
model_sd['model']['emb_g.weight'] = new_emb_g
|
24 |
+
with open("./finetune_speaker.json", 'w', encoding='utf-8') as f:
|
25 |
+
json.dump(hps, f, indent=2)
|
26 |
+
torch.save(model_sd, "./G_latest.pth")
|
27 |
+
else:
|
28 |
+
with open("./finetune_speaker.json", 'w', encoding='utf-8') as f:
|
29 |
+
json.dump(hps, f, indent=2)
|
30 |
+
torch.save(model_sd, "./G_latest.pth")
|
31 |
+
# save another config file copy in MoeGoe format
|
32 |
+
hps['speakers'] = valid_speakers
|
33 |
+
with open("./moegoe_config.json", 'w', encoding='utf-8') as f:
|
34 |
+
json.dump(hps, f, indent=2)
|
35 |
+
|
36 |
+
|
37 |
+
|
scripts/resample.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import argparse
|
4 |
+
import torchaudio
|
5 |
+
|
6 |
+
|
7 |
+
def main():
|
8 |
+
with open("./configs/finetune_speaker.json", 'r', encoding='utf-8') as f:
|
9 |
+
hps = json.load(f)
|
10 |
+
target_sr = hps['data']['sampling_rate']
|
11 |
+
filelist = list(os.walk("./sampled_audio4ft"))[0][2]
|
12 |
+
if target_sr != 22050:
|
13 |
+
for wavfile in filelist:
|
14 |
+
wav, sr = torchaudio.load("./sampled_audio4ft" + "/" + wavfile, frame_offset=0, num_frames=-1,
|
15 |
+
normalize=True, channels_first=True)
|
16 |
+
wav = torchaudio.transforms.Resample(orig_freq=sr, new_freq=target_sr)(wav)
|
17 |
+
torchaudio.save("./sampled_audio4ft" + "/" + wavfile, wav, target_sr, channels_first=True)
|
18 |
+
|
19 |
+
if __name__ == "__main__":
|
20 |
+
main()
|
scripts/short_audio_transcribe.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import whisper
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
import torchaudio
|
5 |
+
import argparse
|
6 |
+
import torch
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
if __name__ == "__main__":
|
10 |
+
parser = argparse.ArgumentParser()
|
11 |
+
parser.add_argument("--whisper_size", default="large")
|
12 |
+
args = parser.parse_args()
|
13 |
+
#assert (torch.cuda.is_available()), "Please enable GPU in order to run Whisper!"
|
14 |
+
model = whisper.load_model(args.whisper_size)
|
15 |
+
parent_dir = "./custom_character_voice/"
|
16 |
+
speaker_names = list(os.walk(parent_dir))[0][1]
|
17 |
+
speaker_annos = []
|
18 |
+
total_files = sum([len(files) for r, d, files in os.walk(parent_dir)])
|
19 |
+
# resample audios
|
20 |
+
# 2023/4/21: Get the target sampling rate
|
21 |
+
with open("./configs/amitaro_jp_base.json", 'r', encoding='utf-8') as f:
|
22 |
+
hps = json.load(f)
|
23 |
+
target_sr = hps['data']['sampling_rate']
|
24 |
+
processed_files = 0
|
25 |
+
for speaker in speaker_names:
|
26 |
+
filelist = (list(os.walk(parent_dir + speaker))[0][2])
|
27 |
+
for i, wavfile in tqdm(enumerate(filelist), desc="Processing Audio:", total=len(filelist)):
|
28 |
+
# try to load file as audio
|
29 |
+
if wavfile.startswith("processed_"):
|
30 |
+
continue
|
31 |
+
try:
|
32 |
+
wav, sr = torchaudio.load(parent_dir + speaker + "/" + wavfile, frame_offset=0, num_frames=-1, normalize=True,
|
33 |
+
channels_first=True)
|
34 |
+
wav = wav.mean(dim=0).unsqueeze(0)
|
35 |
+
if sr != target_sr:
|
36 |
+
wav = torchaudio.transforms.Resample(orig_freq=sr, new_freq=target_sr)(wav)
|
37 |
+
if wav.shape[1] / sr > 20:
|
38 |
+
print(f"{wavfile} too long, ignoring\n")
|
39 |
+
save_path = parent_dir + speaker + "/" + f"processed_{i}.wav"
|
40 |
+
torchaudio.save(save_path, wav, target_sr, channels_first=True)
|
41 |
+
# transcribe text
|
42 |
+
#lang, text = transcribe_one(save_path)
|
43 |
+
|
44 |
+
audio = whisper.load_audio(save_path)
|
45 |
+
audio = whisper.pad_or_trim(audio)
|
46 |
+
|
47 |
+
# make log-Mel spectrogram and move to the same device as the model
|
48 |
+
mel = whisper.log_mel_spectrogram(audio).to(model.device)
|
49 |
+
|
50 |
+
options = whisper.DecodingOptions(beam_size=5, language="ja", fp16 = False)
|
51 |
+
result = whisper.decode(model, mel, options)
|
52 |
+
|
53 |
+
text = "[JA]"+ result.text + "[JA]\n"
|
54 |
+
speaker_annos.append(save_path + "|" + speaker + "|" + text)
|
55 |
+
|
56 |
+
processed_files += 1
|
57 |
+
#print(f"Processed: {processed_files}/{total_files}")
|
58 |
+
except:
|
59 |
+
print(f"Error occurred: {wavfile}")
|
60 |
+
continue
|
61 |
+
|
62 |
+
# # clean annotation
|
63 |
+
# import argparse
|
64 |
+
# import text
|
65 |
+
# from utils import load_filepaths_and_text
|
66 |
+
# for i, line in enumerate(speaker_annos):
|
67 |
+
# path, sid, txt = line.split("|")
|
68 |
+
# cleaned_text = text._clean_text(txt, ["cjke_cleaners2"])
|
69 |
+
# cleaned_text += "\n" if not cleaned_text.endswith("\n") else ""
|
70 |
+
# speaker_annos[i] = path + "|" + sid + "|" + cleaned_text
|
71 |
+
# write into annotation
|
72 |
+
if len(speaker_annos) == 0:
|
73 |
+
print("Warning: no short audios found, this IS expected if you have only uploaded long audios, videos or video links.")
|
74 |
+
print("this IS NOT expected if you have uploaded a zip file of short audios. Please check your file structure or make sure your audio language is supported.")
|
75 |
+
with open("short_character_anno.txt", 'w', encoding='utf-8') as f:
|
76 |
+
for line in speaker_annos:
|
77 |
+
f.write(line)
|
78 |
+
|
79 |
+
# import json
|
80 |
+
# # generate new config
|
81 |
+
# with open("./configs/finetune_speaker.json", 'r', encoding='utf-8') as f:
|
82 |
+
# hps = json.load(f)
|
83 |
+
# # modify n_speakers
|
84 |
+
# hps['data']["n_speakers"] = 1000 + len(speaker2id)
|
85 |
+
# # add speaker names
|
86 |
+
# for speaker in speaker_names:
|
87 |
+
# hps['speakers'][speaker] = speaker2id[speaker]
|
88 |
+
# # save modified config
|
89 |
+
# with open("./configs/modified_finetune_speaker.json", 'w', encoding='utf-8') as f:
|
90 |
+
# json.dump(hps, f, indent=2)
|
91 |
+
# print("finished")
|
scripts/video2audio.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from concurrent.futures import ThreadPoolExecutor
|
3 |
+
|
4 |
+
from moviepy.editor import AudioFileClip
|
5 |
+
|
6 |
+
video_dir = "./video_data/"
|
7 |
+
audio_dir = "./raw_audio/"
|
8 |
+
filelist = list(os.walk(video_dir))[0][2]
|
9 |
+
|
10 |
+
|
11 |
+
def generate_infos():
|
12 |
+
videos = []
|
13 |
+
for file in filelist:
|
14 |
+
if file.endswith(".mp4"):
|
15 |
+
videos.append(file)
|
16 |
+
return videos
|
17 |
+
|
18 |
+
|
19 |
+
def clip_file(file):
|
20 |
+
my_audio_clip = AudioFileClip(video_dir + file)
|
21 |
+
my_audio_clip.write_audiofile(audio_dir + file.rstrip(".mp4") + ".wav")
|
22 |
+
|
23 |
+
|
24 |
+
if __name__ == "__main__":
|
25 |
+
infos = generate_infos()
|
26 |
+
with ThreadPoolExecutor(max_workers=os.cpu_count()) as executor:
|
27 |
+
executor.map(clip_file, infos)
|
scripts/voice_upload.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from google.colab import files
|
2 |
+
import shutil
|
3 |
+
import os
|
4 |
+
import argparse
|
5 |
+
if __name__ == "__main__":
|
6 |
+
parser = argparse.ArgumentParser()
|
7 |
+
parser.add_argument("--type", type=str, required=True, help="type of file to upload")
|
8 |
+
args = parser.parse_args()
|
9 |
+
file_type = args.type
|
10 |
+
|
11 |
+
basepath = os.getcwd()
|
12 |
+
uploaded = files.upload() # 上传文件
|
13 |
+
assert(file_type in ['zip', 'audio', 'video'])
|
14 |
+
if file_type == "zip":
|
15 |
+
upload_path = "./custom_character_voice/"
|
16 |
+
for filename in uploaded.keys():
|
17 |
+
#将上传的文件移动到指定的位置上
|
18 |
+
shutil.move(os.path.join(basepath, filename), os.path.join(upload_path, "custom_character_voice.zip"))
|
19 |
+
elif file_type == "audio":
|
20 |
+
upload_path = "./raw_audio/"
|
21 |
+
for filename in uploaded.keys():
|
22 |
+
#将上传的文件移动到指定的位置上
|
23 |
+
shutil.move(os.path.join(basepath, filename), os.path.join(upload_path, filename))
|
24 |
+
elif file_type == "video":
|
25 |
+
upload_path = "./video_data/"
|
26 |
+
for filename in uploaded.keys():
|
27 |
+
# 将上传的文件移动到指定的位置上
|
28 |
+
shutil.move(os.path.join(basepath, filename), os.path.join(upload_path, filename))
|
short_audio_transcribe.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import whisper
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
import torchaudio
|
5 |
+
import argparse
|
6 |
+
import torch
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
if __name__ == "__main__":
|
10 |
+
parser = argparse.ArgumentParser()
|
11 |
+
parser.add_argument("--whisper_size", default="large")
|
12 |
+
args = parser.parse_args()
|
13 |
+
#assert (torch.cuda.is_available()), "Please enable GPU in order to run Whisper!"
|
14 |
+
model = whisper.load_model(args.whisper_size, device="cpu")
|
15 |
+
parent_dir = "./custom_character_voice/"
|
16 |
+
speaker_names = list(os.walk(parent_dir))[0][1]
|
17 |
+
speaker_annos = []
|
18 |
+
total_files = sum([len(files) for r, d, files in os.walk(parent_dir)])
|
19 |
+
# resample audios
|
20 |
+
# 2023/4/21: Get the target sampling rate
|
21 |
+
with open("./configs/amitaro_jp_base.json", 'r', encoding='utf-8') as f:
|
22 |
+
hps = json.load(f)
|
23 |
+
target_sr = hps['data']['sampling_rate']
|
24 |
+
processed_files = 0
|
25 |
+
for speaker in speaker_names:
|
26 |
+
filelist = (list(os.walk(parent_dir + speaker))[0][2])
|
27 |
+
for i, wavfile in tqdm(enumerate(filelist), desc="Processing Audio:", total=len(filelist)):
|
28 |
+
# try to load file as audio
|
29 |
+
if wavfile.startswith("processed_"):
|
30 |
+
continue
|
31 |
+
#try:
|
32 |
+
wav, sr = torchaudio.load(parent_dir + speaker + "/" + wavfile, frame_offset=0, num_frames=-1, normalize=True,
|
33 |
+
channels_first=True)
|
34 |
+
wav = wav.mean(dim=0).unsqueeze(0)
|
35 |
+
if sr != target_sr:
|
36 |
+
wav = torchaudio.transforms.Resample(orig_freq=sr, new_freq=target_sr)(wav)
|
37 |
+
if wav.shape[1] / sr > 20:
|
38 |
+
print(f"{wavfile} too long, ignoring\n")
|
39 |
+
save_path = parent_dir + speaker + "/" + f"processed_{i}.wav"
|
40 |
+
torchaudio.save(save_path, wav, target_sr, channels_first=True)
|
41 |
+
# transcribe text
|
42 |
+
#lang, text = transcribe_one(save_path)
|
43 |
+
|
44 |
+
audio = whisper.load_audio(save_path)
|
45 |
+
audio = whisper.pad_or_trim(audio)
|
46 |
+
|
47 |
+
# make log-Mel spectrogram and move to the same device as the model
|
48 |
+
mel = whisper.log_mel_spectrogram(audio).to(model.device)
|
49 |
+
|
50 |
+
options = whisper.DecodingOptions(beam_size=5, language="ja", fp16 = False)
|
51 |
+
result = whisper.decode(model, mel, options)
|
52 |
+
|
53 |
+
text = "[JA]"+ result.text + "[JA]\n"
|
54 |
+
speaker_annos.append(save_path + "|" + speaker + "|" + text)
|
55 |
+
|
56 |
+
processed_files += 1
|
57 |
+
#print(f"Processed: {processed_files}/{total_files}")
|
58 |
+
#except:
|
59 |
+
# print(f"Error occurred: {wavfile}")
|
60 |
+
# continue
|
61 |
+
|
62 |
+
# # clean annotation
|
63 |
+
# import argparse
|
64 |
+
# import text
|
65 |
+
# from utils import load_filepaths_and_text
|
66 |
+
# for i, line in enumerate(speaker_annos):
|
67 |
+
# path, sid, txt = line.split("|")
|
68 |
+
# cleaned_text = text._clean_text(txt, ["cjke_cleaners2"])
|
69 |
+
# cleaned_text += "\n" if not cleaned_text.endswith("\n") else ""
|
70 |
+
# speaker_annos[i] = path + "|" + sid + "|" + cleaned_text
|
71 |
+
# write into annotation
|
72 |
+
if len(speaker_annos) == 0:
|
73 |
+
print("Warning: no short audios found, this IS expected if you have only uploaded long audios, videos or video links.")
|
74 |
+
print("this IS NOT expected if you have uploaded a zip file of short audios. Please check your file structure or make sure your audio language is supported.")
|
75 |
+
with open("short_character_anno.txt", 'w', encoding='utf-8') as f:
|
76 |
+
for line in speaker_annos:
|
77 |
+
f.write(line)
|
78 |
+
|
79 |
+
# import json
|
80 |
+
# # generate new config
|
81 |
+
# with open("./configs/finetune_speaker.json", 'r', encoding='utf-8') as f:
|
82 |
+
# hps = json.load(f)
|
83 |
+
# # modify n_speakers
|
84 |
+
# hps['data']["n_speakers"] = 1000 + len(speaker2id)
|
85 |
+
# # add speaker names
|
86 |
+
# for speaker in speaker_names:
|
87 |
+
# hps['speakers'][speaker] = speaker2id[speaker]
|
88 |
+
# # save modified config
|
89 |
+
# with open("./configs/modified_finetune_speaker.json", 'w', encoding='utf-8') as f:
|
90 |
+
# json.dump(hps, f, indent=2)
|
91 |
+
# print("finished")
|
text/LICENSE
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Copyright (c) 2017 Keith Ito
|
2 |
+
|
3 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
4 |
+
of this software and associated documentation files (the "Software"), to deal
|
5 |
+
in the Software without restriction, including without limitation the rights
|
6 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
7 |
+
copies of the Software, and to permit persons to whom the Software is
|
8 |
+
furnished to do so, subject to the following conditions:
|
9 |
+
|
10 |
+
The above copyright notice and this permission notice shall be included in
|
11 |
+
all copies or substantial portions of the Software.
|
12 |
+
|
13 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
14 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
15 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
16 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
17 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
18 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
19 |
+
THE SOFTWARE.
|
text/__init__.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" from https://github.com/keithito/tacotron """
|
2 |
+
from text import cleaners
|
3 |
+
from text.symbols import symbols
|
4 |
+
|
5 |
+
|
6 |
+
# Mappings from symbol to numeric ID and vice versa:
|
7 |
+
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
8 |
+
_id_to_symbol = {i: s for i, s in enumerate(symbols)}
|
9 |
+
|
10 |
+
|
11 |
+
def text_to_sequence(text, symbols, cleaner_names):
|
12 |
+
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
13 |
+
Args:
|
14 |
+
text: string to convert to a sequence
|
15 |
+
cleaner_names: names of the cleaner functions to run the text through
|
16 |
+
Returns:
|
17 |
+
List of integers corresponding to the symbols in the text
|
18 |
+
'''
|
19 |
+
sequence = []
|
20 |
+
symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
21 |
+
clean_text = _clean_text(text, cleaner_names)
|
22 |
+
print(clean_text)
|
23 |
+
print(f" length:{len(clean_text)}")
|
24 |
+
for symbol in clean_text:
|
25 |
+
if symbol not in symbol_to_id.keys():
|
26 |
+
continue
|
27 |
+
symbol_id = symbol_to_id[symbol]
|
28 |
+
sequence += [symbol_id]
|
29 |
+
print(f" length:{len(sequence)}")
|
30 |
+
return sequence
|
31 |
+
|
32 |
+
|
33 |
+
def cleaned_text_to_sequence(cleaned_text, symbols):
|
34 |
+
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
35 |
+
Args:
|
36 |
+
text: string to convert to a sequence
|
37 |
+
Returns:
|
38 |
+
List of integers corresponding to the symbols in the text
|
39 |
+
'''
|
40 |
+
symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
41 |
+
sequence = [symbol_to_id[symbol] for symbol in cleaned_text if symbol in symbol_to_id.keys()]
|
42 |
+
return sequence
|
43 |
+
|
44 |
+
|
45 |
+
def sequence_to_text(sequence):
|
46 |
+
'''Converts a sequence of IDs back to a string'''
|
47 |
+
result = ''
|
48 |
+
for symbol_id in sequence:
|
49 |
+
s = _id_to_symbol[symbol_id]
|
50 |
+
result += s
|
51 |
+
return result
|
52 |
+
|
53 |
+
|
54 |
+
def _clean_text(text, cleaner_names):
|
55 |
+
for name in cleaner_names:
|
56 |
+
cleaner = getattr(cleaners, name)
|
57 |
+
if not cleaner:
|
58 |
+
raise Exception('Unknown cleaner: %s' % name)
|
59 |
+
text = cleaner(text)
|
60 |
+
return text
|